
Prosper: A Framework for Extending Prolog
Applications with a Web Interface

Levente Hunyadi
hunyadi@users.sourceforge.net

Budapest University of Technology and Economics
Department of Computer Science and Information Theory

1117 Budapest, Magyar Tudósok körútja 2., Hungary
Phone: +36 1 463-2585 Fax: +36 1 463-3147

Keywords: web integration; application development framework

Abstract. Clear separation of presentation and code-behind, declara-
tive use of visual control elements and a supportive background frame-
work to automate recurring tasks are fundamental to rapid web applica-
tion development. In this paper, a framework is presented that facilitates
extending Prolog applications with a web front-end. The framework re-
lies on Prolog to the greatest possible extent, supports code re-use, and
integrates easily into existing web server solutions. An architecture com-
prising two layers is elaborated. The lower layer, attached directly yet
flexibly via FastCGI to the web server, handles issues of threading, basic
session and context management, while the upper layer produces output
based on XML source documents, which can be thought of as the Pro-
log counterparts of ASP.NET and Java server pages. The framework has
been developed with SWI-Prolog and contains low-level communication
code in C.

1 Introduction

The idea of a comprehensive web framework was brought forth by the develop-
ment of a web application to assist in teaching declarative programming and help
in course-related administration. In this scenario, the ideal framework should not
only address the challenges of the web environment but should also remain ef-
fective from a declarative programmer’s view. While existing web development
frameworks give excellent support for structured display of data in web pages,
they fail to provide a straightforward way to embed Prolog calls such as those
required for evaluating programming assignments.

The proposed framework, named PROlog Server Pages Extensible aRchitec-
ture (or Prosper in short), realizes a web environment for the direct disposal of
Prolog programs. By connecting directly to the web server, it eliminates multiple
levels of indirection and reduces the speed penalty incurred per request. More
importantly, it supports designing complex web pages in existing HTML editors
independently from actual Prolog application code. Pages are augmented with
special markup that carries extra information for Prosper. These special elements

can incorporate elaborate visual presentation logic into web pages driven by val-
ues calculated by Prolog predicates in application code. This allows seamless cre-
ation of an interface to Prolog solutions without much coding or re-structuring
of the original program for the sake of a web interface.

Prosper is implemented mainly in SWI-Prolog and partially in C. SWI-Prolog
is compliant to part one of Prolog ISO standard and has comprehensive support
for multi-threading. ISO-compliance caters for portability while multi-threading
helps harness the potential in parallel execution. Network communication inter-
faces have been written in C to ensure maximum performance. The full source
code of Prosper is available at SourceForge.net [2].

The paper is structured as follows. Section 2 gives a brief introduction to web
technologies underlying the proposed framework. Section 3 elaborates on design
trade-offs, inspects related work and analyzes possible approaches to create a
Prolog web framework with special attention to the chosen approach. In Sec-
tion 4, the architecture of the proposed framework is laid out. Section 5 traces
the way a request produces a reply in Prosper by means of an example. Section 6
gives implementation details and compares how Prosper fares in terms of speed
w.r.t. various other setups. Section 7, with which this paper concludes, outlines
possible ways of extension and future work.

Throughout the paper, a sound knowledge of Prolog with basics on SGML-
languages (especially XML [5] and (X)HTML [3]) and some experience in de-
veloping web applications with ASP.NET [11] and/or Java [4] is assumed. One
should consult the indicated sources for further details on these technologies.

2 Background

Essentially, the web operates in a request-and-reply manner according to the
Hyper-Text Transfer Protocol. First, the client formulates a request querying a
document. The request is received by the server, which looks up the requested
document in its file system and returns it to the client in reply [8]. In the case of
dynamic content generation, the request received by the server does not corre-
spond to a file system entry, rather it is forwarded to an external application that
outputs the reply based on the request context. Web application development
frameworks are inserted into the chain either in place of the server (e.g. Java
web solutions) or between server and external application (e.g. the ASP.NET
framework), and expose a programmer-friendly view of the web environment to
the application developer.

Web frameworks taking the place of the server require a thorough imple-
mentation to provide general web service functionality (e.g. serve static content)
with sufficient security. For this end, it is often desirable to use a trusted web
server behind which applications are placed rather than using a separate end-
point for each application. In this scenario, frameworks are often connected to
servers by means of server APIs (application programming interfaces). Here, the
application is loaded as a module of the server and the server forwards requests

2

matching some criteria (URL pattern or extension) to the application instead of
processing them itself. This is called strong coupling.

Common Gateway Interface [1] describes a protocol that provides loose cou-
pling. In order to process matching requests, the server invokes a non-integrated
external application with the given request context (query parameters, user set-
tings, etc.) and returns the output it produces to the client. Loose coupling
separates the processes involved, which therefore minimally affect each other,
increasing flexibility. In addition, fatal errors in the application do not endanger
the server. Nonetheless, repetitive invocation of an external program can take
up valuable resources by successive process initializations (re-opening database
connections, etc.). FastCGI [6] is a persistent version of the CGI protocol that
allows applications to remain active after serving a request (thereby maintaining
database connections, etc.) yet preserving their independence (i.e. no modifica-
tion of the server is required and the application works with web servers of
multiple vendors).

The request and response chains and the relationships of the various appli-
cation types are shown in Figure 1.

web server

framework
API

user agent

CGI
application

FastCGI
application

application

internet

Fig. 1. The web service chain. The dashed rectangle indicates the boundary of the
process space while the dashed arrows refer to non-persistent connection.

Applications that process many simultaneous requests have to be multi-
threaded so that processing a request does not keep others waiting. Hence, each
request is assigned a separate newly initialized thread. However, on high demand
this can lead to the so-called thrashing, where threads with already assigned jobs
lose computing resources to dozens of rapidly launched new threads, eventually
leading to no thread performing useful task. Thus, applications often make use
of the worker thread model. In this model, a constant number of threads execute
concurrently. Jobs are assigned threads from a pool, which return to the pool
after the job is complete. This allows fast processing of simultaneous requests
with elimination of thread startup costs and stability upon high demand.

Many web development platforms make use of the model-view paradigm. In
this paradigm, application logic (what the program does) and visual presentation
(how the results are displayed) are strictly separated and logic does not reference
presentation. This allows the two to be created more independently and caters
for easier maintenance of both. While not every web development framework
makes it compulsory, the pattern can be considered fairly wide-spread.

3

3 Possible Approaches and Related Work

In general, two approaches exist as to extending a Prolog application with a web
interface.

(a) Generating web content directly from a Prolog program, possibly with
the help of general-purpose libraries, is a straightforward approach. The PiLLoW
library [7], available in many Prolog implementations, is a notable representa-
tive of the this approach. As exemplified by the library, the close relationship
of Prolog terms and the hierarchical structure of HTML easily lends itself to
composing the web page in the form of terms, which are then transformed to
and output as plain text on demand. By means of uninstantiated variables in
the term representation, simple templates can be created.

Nevertheless, a Prolog term representation is inherently not visual and in-
tegrates poorly into existing web authoring tools. Moreover, the approach does
not promote clear separation of application logic and presentation, seriously vio-
lating the model-view paradigm and leading to more difficult maintenance. Also,
a stand-alone Prolog server replying to requests on a dedicated port is often as-
sumed, which is hard to incorporate into a complex environment with an existing
web server. However, a library such as PiLLoW can take off the majority of re-
curring tasks from the programmer’s shoulder and can contribute greatly to web
application development, especially in simple scenarios. Commonly aided tasks
include parsing HTTP GET and POST parameters, generating forms, HTTP
cookies and session maintenance.

(b) Embedding pieces of Prolog in the presentation layer (Figure 2) is another
natural approach, which can be thought of as the “inside out” version of the
previous one, motivated by various successful server-side technologies such as
PHP. Here, web pages are composed as (X)HTML rather than as Prolog terms,
and Prolog calls are inserted in the text by means of special escape sequences.
The helper library parses the page into a predicate consisting of a series of
write/1 statements and the equivalents of the embedded Prolog calls. Many
projects that take this approach exist in the Prolog domain, [10] and [12] are
two such examples.

<?, member(number=N, Get),

forall((between(1, N, X), factorial(X, Y)), ?>

The factorial of <?= X ?> is <?= Y ?>.

<?), ?>

Fig. 2. An excerpt from an HTML server page composed with embedded Prolog escape
sequences. The snippet lists all factorials from 1 to N. N is specified as a query string
parameter.

Albeit simple, this approach is generally insufficient for larger projects as it is
weakly structured. Apparently, even repetitively displaying a block of text as in
Figure 2 produces code that is difficult to comprehend. More complex nesting is
even harder to implement only by means of skipping in and out of escaped blocks.

4

Clearly, escape sequences lead to interleaved application logic and presentation,
and are hence extremely difficult to maintain or extend.

Another variant of approach (b) is composing web pages in an external frame-
work, such as JSP or ASP.NET, and embedding foreign language calls to Prolog.
PrologBeans for Java and PrologBeans.NET for the .NET platform [15], both
available as SICStus extensions, are representatives of this variant. Here, all web-
related issues are handled by an external framework, which provides optimized
solutions to general patterns in web authoring and offers rapid application de-
velopment. In order to call Prolog predicates, however, wrapper objects, written
in the native language of the framework, are required that marshal calls to the
Prolog engine. In fact, from a design perspective, the approach is comprised of
two parts, so-called stubs. The wrapper object constitutes the first stub, while
its Prolog counterpart the other. The stubs maintain a TCP or piped connection
to each other through which Prolog call parameters and results are transmitted,
usually as a stream of characters.

While practical in harnessing the benefits of a web development framework,
this approach undoubtedly requires experience in programming both Prolog and
the external encapsulating language. From a performance point of view, stubs
introduce a further level of indirection into the web service chain and often lead
to inefficient operation because the Prolog and the foreign language execution
model are vastly different. Lastly, debugging Prolog embedded in foreign code is
substantially harder, which can greatly increase development time.

Prosper offers a balanced mix of the two main approaches. It is a variant of
approach (a) in the sense that the majority of request processing and content
generation is performed in Prolog or Prolog-integrated libraries. Only Prolog
programming experience is required and development is eased through improved
debugging. On the other hand, it is closer to approach (b) in the sense that it
adopts the model-view paradigm of rapid application development frameworks
by splitting web applications into an application logic and a presentation layer.

<html logic-module="factorial">

<h1>Factorial example</h1>

<psp:assign var="E" expr="{atom_number(http_get(number))}">

<psp:for-all function="between(1, E)" iterator="N">

<psp:insert function="factorial(N)" />

</psp:for-all>

</psp:assign>

</html>

:- module(factorial, [factorial/2]).

factorial(Number, Factorial) :- ...

Fig. 3. The Prosper example document factorial.xhtml (above) and the Prolog mod-
ule factorial.pl associated with it (below). Some XHTML elements (e.g. ul) have
been omitted and full namespaces are not shown for brevity.

5

Application logic is coded as a regular Prolog module, while presentation is an
(X)HTML document with some elements carrying extra information for Prosper
to realize visual transformation rules. Figure 3 shows a web page that lists all
factorials up to N, functionally equivalent to the web page generated by the
snippet in Figure 2. Despite its verbosity, the presentation layer is not interleaved
with application logic and retains its structure as a regular XHTML document.
Roughly speaking, Prosper can be viewed as an extension of PiLLoW with a
more robust visual front-end. Section 4 elaborates on the design of the proposed
framework.

4 Architectural overview

From a design perspective, Prosper can be decomposed into two major layers
(Figure 4). The lower layer, Prolog Web Container, maintains a direct persis-
tent connection to the web server through the FastCGI protocol. The FastCGI
module transmits data to and from the Prolog framework. In addition to commu-
nicating with the web server, Prolog Web Container parses headers and payload
associated with HTTP requests into Prolog terms and generates them for replies,
maintains a worker thread pool and assigns jobs to threads. The primary task
of the container is to isolate the communication protocol and provide a natural
view of request, session and profile data for the programmer. In accordance, the
container provides similar facilities as other Prolog libraries in use, PiLLoW in
particular, i.e. reversing content encoding, parsing query strings, etc.

extension
infrastructure

Prolog Web
Container

FastCGI
module

Prolog Server
Pages core

document
repository

module
repository

Prolog Server Pages configuration

Predefined (built-in)
special elements

User-defined
special elements

context
assertion

expression
language

Fig. 4. The architecture of the proposed framework.

Prolog Server Pages, built on top of the container, defines an XML-based doc-
ument model. The conventional XML document model is extended with special
elements belonging to a dedicated namespace each of which realizes a trans-
formation rule. A transformation rule describes how the (visual) content of an
element is transformed based on attributes, and the local and global context of
the given element. Local context corresponds to variables instantiated in server

6

documents, while global context refers to request context as extracted by Prolog
Web Container and exposed as Prolog predicates by the context assertion mod-
ule. In assigning values to local variables, Prosper offers the so-called expression
language. Expression language can be seen as an extension to the is/2 predicate
to include basic atom manipulation, request context variables and user-defined
functions.1

Prosper includes a predefined set of special elements implementing the most
common transformation rules such as conditionals and iteration constructs. How-
ever, the set of transformation rules is not restricted. Relying on the extension
infrastructure, the user may create new modules that contain hook predicates
registered for steps associated with reply generation. Modules correspond to
XML namespaces and exported hook predicate names to element names in server
page documents. In fact, it is via hook predicates that the predefined transfor-
mation rules are realized in the framework, which means – in the extreme case
– that they can also be redefined. Special elements and their implementor hook
predicates are declared in a configuration file. The configuration file also holds
connection settings to the web server and parallel execution parameters required
by Prolog Web Container.

Apart from the visual part of Prolog Server Pages, the logic modules give
real power to the architecture. While independent from Prolog Server Pages
documents, they provide the code-behind that encapsulates true application logic
as conventional Prolog modules. Server pages can reference code-behind in a
variety of ways: assign server page variables based on application logic, test for
the satisfiability of predicates (goals) and formulate conditions using the return
value of functions, thereby affecting visual layout.

Prolog modules constituting application code reside in a dedicated directory,
the so-called module repository. Similarly, Prosper maintains a document repos-
itory, which is the default location to search for server pages.

5 Generating a reply

In order to get a deeper insight into the internals of the framework, in this
section we will trace how a request dynamically produces a reply in Prosper. As
an example, let us suppose that the user has entered a URL into his browser’s
location bar that corresponds to a web page which lists all factorials up to 3
(e.g. http://prosper.iit.bme.hu/factorial.xhtml?number=3).

Once received by the web server, based on configuration settings, the server
detects that this HTTP request is to be forwarded to Prosper for reply gener-
ation. It dispatches a FastCGI request, which is intercepted by one of the idle
Prolog Web Container worker threads.2 The thread extracts the context asso-
1 In this paper, a Prolog function corresponds to a predicate all of whose arguments

are strictly inbound except for the last, which is strictly outbound, and which should
be unified with a ground term and is interpreted as the return value of the function.
This corresponds to the Mercury [9] definition of function.

2 See predicate worker/1 in module prosper server [2].

7

ciated with the request as Prolog terms. The context typically includes query
parameters in the URL (typically for HTTP GET requests), HTML form data
passed as payload (typically for HTTP POST requests) and the session identifier.
The Prolog representation of the context is handed over to Prolog Server Pages.
In our example, the request context only contains GET parameters, represented
by the list [number=’3’].

First, Prolog Server Pages loads the document associated with the URL. The
loaded document is preprocessed into a so-called intermediate term (IT) repre-
sentation. Context is then asserted into a dedicated module and the document is
evaluated. Evaluation ends with generating output, which is returned by Prolog
Web Container to the web server as a FastCGI reply. Transformation rules are
associated with both the preprocessing and the evaluation phase. The crucial
difference is that in the preprocessing phase, no external context information is
available, while evaluation-time transformation is context-sensitive (Figure 5).
The aforementioned steps are elaborated below.

Document
repository

XML term inter-
mediate
term

XHTML
document

XHTML
document

XHTML
document

HTTP request
context

evaluation preprocessingloading

Fig. 5. The stages of reply generation in the case of a non-cached server page document.

Loading a Prosper document. The role of the loading phase3 is to fetch a refer-
enced document from disk and construct its Prolog XML term representation,
similar to the one used by the PiLLoW library [7].

Whenever an HTTP request corresponds to a server page that has not been
loaded, Prosper looks for the page in the document repository. Let us suppose
that the URL entered by the imaginary user does not correspond to a loaded
document. Therefore, the document factorial.xhtml is loaded and parsed into
a Prolog XML term representation as seen in Figure 6. This representation
mainly consists of nested element/3 terms, where the arguments represent:

1. the name of the XML element after namespace resolution;
2. a list of attributes associated with the element;
3. a list of nested XML nodes as element/3 terms for XML elements or atoms

for character data.

Preprocessing phase. The goal of the preprocessing phase,4 the next link in the
service chain, is to validate the loaded document. Preprocessing ensures that
3 Implemented in import page/3 in module prosper core [2].
4 Implemented in markup to term/6 in module prosper core [2].

8

element(html, [’logic-module’=factorial], [

element(h1, [], [’Factorial example’]),

element(psp:assign, [var=’E’, expr=’{atom_number(http_get(number))}’],[

element(psp:for-all, [function=’between(1, E)’, iterator=’N’], [

element(li, [], [

element(psp:insert, [function=’factorial(N)’], [])

])

])

])

])

Fig. 6. The XML term representation of the example document in Figure 3.

special elements referenced by the document exist, they are used correctly in
terms of syntax, and that the logic module associated with the document is
loaded and compiled.

As previously mentioned, special elements correspond to transformation rules.
What the transformation rule exactly does depends on the attributes associated
with the element and its context. In our example, psp:assign, psp:for-all
and psp:insert are special elements, assuming the namespace psp is registered
with Prosper.5 The psp:assign special element can have a var attribute, which
specifies the name of the variable to introduce in the scope of the element. Simi-
larly, psp:insert is used with the attribute function in the example to insert a
return value but could also be used in conjunction with expr to insert the value
of an expression.

However, in the preprocessing phase no context information associated with
the HTTP request is available; it has not yet been asserted. In spite of this,
verifying attributes, parsing atoms into terms, etc. are already possible. These
operations are performed by preprocessing-time hooks for each special element.
A hook predicate interprets element attributes and/or contents and has the fol-
lowing signature (elementName denotes the name of the special element without
the namespace):

elementName (+VarTypes, +Attrs, +Contents, -Terms)

Here, Attrs is a list of Name=Value pairs, which consists of attributes that
parameterize the element. Contents is a list of inner elements in XML term
representation. Terms is the single output argument of the predicate, which is
the IT representation (preprocessed form) of the element and is commonly bound
to a single-element list of the following form:6

[extension(ModuleName:Predicate, ContentTerms)].

5 For conciseness, namespaces are not written out as full URLs, even though in the
actual implementation, they are used in that manner.

6 In fact, Terms is a list of atoms, element/3 and extension/2 terms. However, only
extension/2 terms are subject to evaluation in a later phase thus Terms is usually
a list with a single extension/2 element.

9

In this term, ContentTerms has similar semantics as Terms in the enclosing
element: it is the IT representation of the enclosed child elements. This sug-
gests a recursive way of operation. Indeed, albeit not compulsory, most special
elements compute their own IT representation based on that of their descen-
dants. Predicate corresponds to a Prolog predicate, which (augmented with
some additional arguments) will be called in the evaluation phase to generate
output. In other words, Predicate is the evaluation-time transformation rule
associated with the special element parameterized with Attrs. For instance, a
different Predicate is associated with a psp:assign element if it assigns a vari-
able based on an expression than if based on a function call. In fact, arguments
present in Attrs as an association list are converted into positional arguments
with appropriate conversions where necessary (e.g. atoms converted to Prolog
goals).

Hook predicates should never fail but should signal malformed syntax (such
as an unrecognized attribute) by throwing an exception.7 This guarantees that
the document is syntactically well-formed at the end of the preprocessing phase.

element(html, [], [

element(h1, [], [’Factorial example’]),

extension(assign expression(’E’, EL), [

extension(for all(factorial:between(1, E)-[’E’=E], ’N’), [

element(li, [], [

extension(insert function(factorial:factorial(N)-[’N’=N]), [])

])

])

])

])

Fig. 7. The intermediate term representation of the example document. EL denotes
the execution plan of the expression language term and is omitted for conciseness.

To better comprehend the preprocessing phase, we compare the XML term
representation of our example document in Figure 6 with its preprocessed ver-
sion in Figure 7. In the case of the root element html, the two representations
are identical, except for the attribute logic-module. This attribute binds a
conventional Prolog module (the code-behind) to the Prosper document. Any
predicates that occur in the document are auto-qualified with the name of this
module during the preprocessing phase.

The first notable difference is psp:assign, which has been converted into an
extension/2 term. assign expression is the name of a predicate that com-
putes an expression language (EL) term and assigns its value to a variable. The
scope of the variable is the contents of the psp:assign element. The function
http get in the EL term returns the string value of a query string variable, while
atom number, as its name suggests, converts its operand to a Prolog number. Just
as documents, EL expressions are preprocessed, yielding an execution plan, which

7 Failure prevents extracting the context of the actual error.

10

is not shown in Figure 7. The execution plan is a compound term that contains
(1) the uninstantiated variables in the expression and (2) the module-qualified
names of the Prolog functions to call to compute the result.

The representation of the special element psp:for-all has also changed
substantially. The atom in its attribute called function has been converted
into a real Prolog term augmented with a list of uninstantiated variables in it.
for all(Function-Insts, Variable) is a predicate that instantiates variables
in Function and calls it, returning results in a local variable. Subsequent so-
lutions are obtained through backtracking. Note the number of arguments to
between/3 (the third, output argument is absent) and the auto-qualification.

As we have already seen, a unique code-behind file can be associated with a
Prosper document through the logic-module attribute. The exact location of
the file is either directly specified in the logic-module attribute as an absolute
path, or it may be a relative path, in which case it is searched for w.r.t. the
module repository.

For the sake of higher performance, Prosper caches preprocessed documents.
If a document is available in the cache, the loading and preprocessing phases are
skipped.

Request context assertion. Context information available in Prosper documents
and logic modules is loaded in the request context assertion phase. The primary
goal of this phase is to expose HTTP request context (such as request para-
meters and session variables) to EL functions and logic module predicates in a
natural manner without having to propagate an extra argument encapsulating
the context. Predicates in the module psp store context information by means
of thread-local blackboard primitives [13]. Whenever a mutable (session) value
is modified while the request is served (e.g. a session variable is assigned to),
changes are recorded in a dynamic fact database at the end of the subsequent
evaluation phase. Hence, no particular thread is associated with any session and
any worker thread may serve any request. Worker threads load current values
from the dynamic fact database into blackboard primitives before the evaluation
phase and record new values when evaluation ends.

Logic modules have access to context by calling predicates exported by the
module psp. For instance, the http get/2 and session/2 predicates retrieve
the value of a GET and a session variable, respectively, and the predicate
session set/2 assigns a value to a session variable.8 For maximum conformance
to the Prolog execution model, they all support backtracking, i.e. assignments
to session variables are undone upon failure in a logic module predicate.9

Evaluation phase. In the last major phase, evaluation,10 the preprocessed doc-
ument is transformed w.r.t. the available request context. By the end of the

8 For a full list, see exported predicates in module psp [2].
9 SWI-Prolog provides backtrackable destructive assignment on blackboard primitives.

10 Implemented in term to elements/3 in module prosper extensions [2].

11

evaluation phase, the document has been transformed into a term representa-
tion the string equivalent of which is ready to be sent back directly to the client
as response.

From a declarative point of view, each IT element represents an (evaluation-
time) transformation rule, influenced by (1) term contents, (2) asserted HTTP
request- and session-related data that is globally accessible in the entire docu-
ment and (3) local variables assigned by outer special elements (i.e. that encap-
sulate the element to which the rule corresponds).

In the case of element/3 terms, the (recursive) transformation rule is trivial:
transformation rules are applied to each child element with the same context
as valid for the parent element and the evaluated form of the parent element
comprises of the results of these transformation rules. For extension/2 terms,
recall that the first argument corresponds to a hook predicate assembled in the
preprocessing phase: this is what represents the transformation rule. From a
procedural point of view, in fact, the IT representation is traversed top-down,
at each depth invoking hook predicates or the trivial transformation rule, where
hook predicates may introduce new local variables before processing the children
of the term they correspond to.

Local variables are means to store and reuse calculated data within server
page documents. In contrast to globally available data (loaded into the thread-
local module psp in the context assertion phase), they are accessed as Prolog
variables rather than predicates and they are confined to the server page docu-
ment in which they are introduced and may not be directly used in code-behind
files. More precisely, the scope of local variables is always restricted to the de-
scendants of the element in which they are assigned and are hidden by variables
of the same name. Server page local variables have similar semantics as Prolog
or XSLT variables in the sense that they can be assigned only once. Contrary to
Prolog, however, variables cannot remain uninstantiated and are unified imme-
diately in the element in which they are introduced.

Figure 8 shows the evaluated version of the preprocessed document in Fig-
ure 7. The result should not be surprising. For the elements html, h1 and
li, the trivial transformation rule has been applied and they are intact ex-
cept for their recursively processed contents. The IT equivalents of special el-
ements psp:assign, psp:for-all and psp:insert are absent from the out-
put but their effect is apparent. The local variable E, which is introduced by
assign expression, has been used to instantiate unbound variables in the func-
tion between(1, E), and the iteration variable N of for all has been used mul-
tiple times to call the function factorial(N). N behaves as expected, taking a
different value for each loop of the iteration.

From the perspective of the framework, local variables are in fact Name=Value
members in an association list. The association list is initially empty for the root
element but may be extended with further members by any transformation rule,
in which case the recursively processed descendant elements see the extended
list. In our example, the evaluation-time transformation rule associated with the

12

element(html, [], [

element(h1, [], [’Factorial example’]),

element(li, [], [’1’]),

element(li, [], [’2’]),

element(li, [], [’6’])

])

])

Fig. 8. The evaluated form of the example document.

psp:assign element prepends the variable E to the name-value list, while the
rule related to psp:for-all does so with N.

6 Implementation and Evaluation

Prosper is implemented mainly in SWI-Prolog and partially in C. The most
notable SWI-specific extra services utilized by the framework are XML document
parsing and generation, blackboard primitives, multi-threading and basic thread
communication.

The framework comprises of the following major components:

1. The server module implements Prolog Web Container.
2. The core module manages the lifecycle of a Prosper page. In particular, it

imports pages on demand, initiates context assertion, page preprocessing
and evaluation, and outputs error documents.

3. The context module asserts and retracts thread-local data via blackboard
primitives to expose request, session and profile values, all of which are ma-
nipulated through dedicated predicates of the module psp.

4. The extension module contains predicates essential to special element im-
plementors. It includes helper predicates to aid XML attribute parsing and
the predicates element to terms/3 and term to elements/3, which realize
page preprocessing and evaluation, respectively. The latter two predicates are
called by transformation rule hooks to recursively process child elements.

5. The built-in elements module contains the predefined set of special elements,
including simple and compound conditionals, iteration constructs, variable
assignment and insertion.

6. The expression language module is responsible for expression language exe-
cution plan generation and expression evaluation.

7. The FastCGI foreign language module, written in C, implements the FastCGI
protocol.

While primarily designed to increase designer and programmer performance,
the proposed architecture is comparable to other Prolog-based technologies in
terms of speed. In a loopback scenario (i.e. server and client were running on
the same machine), different configurations were polled by HTTP requests with
GET parameters. All configurations parsed the query string, computed a simple

13

arithmetic expression based on query parameters, and displayed results in a
web page. CGI and FastCGI-based applications (Prosper inclusive) connected
to Apache/2.0.54, .NET applications ran on the built-in web server provided with
Visual Studio 2005 (see Table 1). Benchmarking was performed by ApacheBench
2.0.41 on an AMD Athlon64 3000+ running Microsoft Windows XP Professional
SP2.

Table 1. Comparative performance of various frameworks. The table shows cumulative
response times in seconds for 1000 requests with 2 concurrent threads. In test cases
small and large, responses of about sizes 1kB and 50kB were requested with few em-
bedded Prolog calls. In test case Prolog-intensive, the architectures had to call about
50 Prolog predicates in application code-behind to produce a result of about 3kB in
size. n.a. indicates that there is no overhead of a Prolog call-intensive setup or it is not
meaningful for the test case.

Development tool Application model small large intensive

SICStus Prolog 3.12.5 CGI, saved state 165.78 225.33 n.a.
SWI-Prolog 5.5.33 CGI 39.47 60.17 n.a.
PrologBeans.NET ASPX 6.297 7.781 91.91
Prosper (PWC + PSP) multi-threaded FCGI 2.688 8.719 5.828
Prosper (PWC only) multi-threaded FCGI 1.938 6.953 n.a.
SWI-Prolog 5.6.27 standalone server 1.266 6.313 n.a.
static html content 0.875 1.406 n.a.

Three cases are of special interest. The standalone multi-threaded HTTP
server shipped with SWI-Prolog can serve as the basis for comparing the perfor-
mance of Prolog-based frameworks. It provides convenience tools for HTTP reply
generation but intermixes presentation and application logic. The difference in
speed between Prosper with Prolog Web Container and SWI’s standalone server
gives an estimate of the cost of using an intermediary FastCGI transmission.
The extra overhead of Prosper with the Prolog Server Pages document model
shows the relative cost of having a separate presentation and application logic
layer.

7 Summary, Perspectives for Future Work

In this paper, a novel framework facilitating the development of web-oriented
Prolog applications has been presented. With a persistent multi-threaded archi-
tecture, an XML-based document model and a set of reusable transformation
rules, it provides an efficient yet convenient way to create web applications in
Prolog. Code changes required in existing Prolog modules for the sake of web
presentation are minimal and web pages constituting the presentation layer can
be composed with a declarative way of thinking in any arbitrary XML editor.
Presentation and application logic are clearly separated, thus application logic

14

can be debugged and maintained independently. Lastly, the framework integrates
well in existing web server scenarios and is open for extension.

However, the proposed solution is not yet comprehensive. Often, web appli-
cations rely on external databases and Prolog implementations scarcely provide
a natural, transparent and homogeneous way of accessing data in these back-
ing stores. The architecture should be extended to provide adequate support for
databases both in terms of flexibility and performance. XML-based requests and
web services are also possible ways of extension, which can greatly contribute to
the versatility of the framework.

Acknowledgements

The author wishes to acknowledge Péter Szabó for the original idea of this frame-
work and for pinpointing crucial development issues as well as the insightful
comments of Péter Szeredi on the drafts of this paper.

References

1. The CGI specification, http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
2. Project page of Prosper, http://sourceforge.net/projects/prospear, module

Prosper in CVS pserver:anonymous@prospear.cvs.sourceforge.net:/cvsroot/prospear
3. XHTML 1.0 The Extensible HyperText Markup Language (Second Edition), Jan-

uary 26 2000 (revised 1 August 2002), http://www.w3.org/TR/xhtml1/
4. Eric Armstrong et al. The J2EE 1.4 Tutorial (For Sun Java System Application

Server Platform Edition 8.1 2005Q2 UR2), Sun Microsystems, June 7, 2005
5. Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fourth Edition), Au-

gust 16 2006, http://www.w3.org/TR/2006/REC-xml-20060816/
6. Mark R. Brown, FastCGI specification, Document Version: 1.0, Open Market,

Inc., April 29, 1996
7. Daniel Cabeza and Manuel Hermenegildo, The PiLLoW Web Programming Li-

brary, Reference Manual, The CLIP Group, School of Computer Science, Technical
University of Madrid, January 5, 2001,
http://www.clip.dia.fi.upm.es/Software/pillow/pillow.html

8. R. Fielding et al., Hypertext Transfer Protocol – HTTP/1.1, RFC 2616, Network
Working Group, The Intenet Society, June 1999

9. Fergus Henderson et al., The Mercury Language Reference Manual, Version
0.12.2, The University of Melbourne, 2006

10. Benjamin Johnston, Prolog Server Pages,
http://www.benjaminjohnston.com.au/template.prolog?t=psp

11. Dan Hurwitz and Jesse Liberty, Programming ASP.NET, 3rd Edition, O’Reilly,
October 2005

12. Mauro Di Nuzzo, Prolog Server Pages: A server-side scripting language based on
Prolog, Version 0.2, April 2006 http://www.prologonlinereference.org/psp.psp

13. Jan Wielemaker, Native preemptive threads in SWI-Prolog, Social Science Infor-
matics (SWI), University of Amsterdam

14. Jan Wielemaker, Z. Huang, Lourens van der Meij, SWI-Prolog and the Web,
http://hcs.science.uva.nl/projects/SWI-Prolog/articles/TPLP-plweb.pdf

15. PrologBeans and PrologBeans.NET for SICStus Prolog,
http://www.sics.se/sicstus/docs/latest/html/sicstus/PrologBeans.html

15

