

Budapesti Műszaki és Gazdaságtudományi Egyetem
Tudományos Diákköri Konferencia

Prolog Server Pages
Extensible Architecture

Providing Web Interface for Prolog Applications

Prolog alkalmazások illesztése webes környezethez

Hunyadi Levente

Konzulensek:
Dr. Szeredi Péter, Számítástudományi és Információelméleti Tanszék
Szabó Péter, Számítástudományi és Információelméleti Tanszék

2005. október 19.

Kivonat

A Prolog logikai nyelv kifejezőereje lehetővé teszi általános programozási nyelvként történő
alkalmazását. Webfelülettel rendelkező alkalmazások fejlesztése esetén azonban jelentős
hátrány a nyelv konzol-orientáltsága, kérdés-válasz jellege. Bár a kérdések és válaszok so-
rozata http kérések és válaszok sorozatába ágyazható, ez a megközeĺıtés, ugyan egyszerű
esetekben alkalmazható, ám nem illeszkedik a webes felhasználói felület-modellbe.

A dolgozat előbb áttekinti a webprogramozást előseǵıtő, rendelkezésre álló Prolog
nyelvi kiterjesztéseket, különös tekintettel a PiLLoW könyvtárra, illetve az idegen nyel-
vekhez kapcsoló illesztési felületekre. Ezek alapján felvázol egy kétszintű rendszerar-
chitektúrát, amely összetett alkalmazások kialaḱıtását teszi lehetővé. Az architektúra
egyrészt támogatást nyújt a http környezet átlátszó, a nyelvbe beépülő elérésére, a
kérések közti állapotmegőrzésre, az egyidejű kérések hatékony kiszolgálására, másrészt
egy bőv́ıthető sablontechnológiát jelent, amely kifejezésnyelvével és strukturált jsp-szerű
szerkezetével webhelyek olyan kialaḱıtása felé vezérel, amelyben a megjeleńıtés és üzleti lo-
gika elválik. Cél, hogy ezáltal lehetővé váljon webfelülettel rendelkező alkalmazás pusztán
Prolog nyelven történő megvalóśıtása, és ne kelljen azt egy webtámogatással b́ıró rend-
szerarchitektúrába ágyazni.

A http protokollt és az alacsonyszintű kommunikációt a webkiszolgálóhoz kapcsolódó
Prolog Web Container rejti el a programozó elől. Környezetet biztośıt felhasználói pro-
gram futtatására, felel a kérések lebonyoĺıtásáért, a kérések közti viszony megőrzéséért
és a kérések okozta terhelés elosztásáért, hátteret nyújtva a Prolog Server Pages tech-
nológiának. A Prolog Server Pages egyszerű, ám kiterjeszthető struktúrális mechanizmus
teszi lehetővé, hogy a megjeleńıtés és az üzleti logika egyértelműen szétválasztható legyen.

A dolgozat, felhasználva annak többszálú lehetőségeit és beéṕıtett alacsonyszintű külső
adat-elérési képességeit, egy SWI-Prolog rendszerre ı́rt referenciaimplementációval, illetve
ennek seǵıtségével megvalóśıtott példaalkalmazással zárul, amely megvalóśıtja és bemu-
tatja a felvázolt architektúrát.

1

Abstract

The expressive power of Prolog enables its use as a general programming language. How-
ever, in the case of applications with web interfaces, the console-oriented, question–answer
nature of the language is a considerable drawback. Even though the series of questions
and answers may be embedded in a series of http requests and responses, this approach,
while acceptable for simpler cases, does not integrate into the web user interface model.

First, the paper provides an overview of Prolog language extensions facilitating web
programming available at the user’s disposal, in particular, the PiLLoW library and for-
eign language interfaces. Based on these, it sketches a two-layered system architecture
that allows constructing complex applications. On one hand, the architecture gives sup-
port to access http in a transparent manner integrated into the language, to preserve
state between requests, to serve concurrent requests efficiently. On the other hand, the
architecture means an extensible template technology with an expression language and
structured jsp-like formalism, which encourages the separation of view and business logic.
It aims to make it possible to implement applications with web interfaces purely in Prolog,
thereby making it unnecessary to embed the application into a system architecture with
support for the web.

The http protocol and low-level communication is hidden from the programmer by
Prolog Web Container, which connects to the web server. It provides an environment for
executing user programs, marshals request handling, preserving state between requests
and load balancing, thereby giving background support for the Prolog Server Pages tech-
nology. Prolog Server Pages, a simple yet extensible structural mechanism, makes it pos-
sible to unambiguously separate view and logic.

The paper, utilizing its multi-threading capabilities and its built-in low-level external
data access support, concludes with a reference implementation in SWI-Prolog, which
realizes the presented system architecture. A sample application is provided for demon-
stration.

2

Contents

1 Introduction 5

2 Existing libraries for the web environment 7
2.1 PiLLoW . 7

2.1.1 Markup generation with templates 7
2.1.2 User interaction . 10
2.1.3 Evaluation . 12

2.2 PrologBeans . 12
2.2.1 Querying Prolog from Java . 13
2.2.2 Receiving Java queries from Prolog 14
2.2.3 Sessions . 14
2.2.4 Evaluation . 14

3 Prolog Server Pages Architecture 16
3.1 Own contributions . 16

4 Prolog Web Container 18
4.1 Design considerations . 18

4.1.1 Level of integration . 18
4.1.2 Process and thread model . 21
4.1.3 Synchronization and data sharing 23

4.2 Differences from Java Servlets . 24

5 Prolog Server Pages documents 25
5.1 Representing server page documents . 25

5.1.1 Term representation of an XML document 25
5.1.2 The intermediate representation . 26
5.1.3 Target-independent representation 27
5.1.4 Relationship of representations . 27

5.2 Variables . 27
5.3 Expression language (“EL”) . 28

5.3.1 Arithmetic expressions . 28
5.3.2 String expressions . 29
5.3.3 Boolean expressions . 29
5.3.4 Invalid expressions . 29
5.3.5 Variables in expressions . 29
5.3.6 Magic quoting . 29

3

CONTENTS 4

5.3.7 Expression language evaluation . 30
5.4 Declarative semantics of functional elements 30

5.4.1 Choice of elements . 31
5.4.2 Conditional inclusion . 31
5.4.3 Iteration . 33
5.4.4 Dynamic construction of elements 34
5.4.5 Variable query and binding . 35
5.4.6 Miscellaneous tags . 36
5.4.7 Attributes of the root node . 37

5.5 Procedural semantics of special elements 37
5.6 Extension mechanism . 37
5.7 Prolog Business Logic files . 39
5.8 Environment facts . 40

5.8.1 Facts for a single request . 40
5.8.2 Facts for session management . 40
5.8.3 Facts for managing application-level variables 41

6 Reference implementation 42
6.1 Overview . 42

6.1.1 Character encoding . 43
6.1.2 Global configuration file . 44

6.2 Prolog Web Container . 44
6.2.1 Server and worker threads . 44
6.2.2 Handling requests . 45

6.3 Prolog Server Pages . 46
6.3.1 Concurrent importation . 46
6.3.2 Page preprocessing . 47
6.3.3 Page evaluation . 47

6.4 Performance evaluation . 49
6.5 Sample application . 49

7 Evaluation 51
7.1 Future work . 52

A Expression language functions 56
A.1 Comparison operators . 56
A.2 String comparison operators . 56
A.3 Arithmetic operators . 57
A.4 String functions . 58

B Deployment instructions 59

Chapter 1

Introduction

Prolog has successfully been utilized as a programming language for knowledge bases but

its expressive power enables its use for general programming tasks. One serious limitation

of the language, however, is its inherent question-answer interface: execution of a sequence

of predefined goals is unsuitable in the quickly developing web environment. Attempts have

been made to wrap the traditional console behavior into a series of http requests and

responses between which state is preserved [19], and even though this approach might be

suitable for simple presentation of information, it is by no means a solution for complex

web applications that deliver interactive content to a wide range of users. Such require a

clear separation of view (user interface) and model (business logic), with adequate support

for presenting visual information.

First, existing Prolog libraries to address the task of web interface development will

be considered; their advantages and disadvantages will be weighed. It will be shown that

while these tools support certain aspects of development for the web, they fail to offer

a comprehensive, all-in-one solution. To remedy the situation, a novel system, Prolog

Server Pages Extensible Architecture (Prosper) will be presented, which facilitates the

use of Prolog in the Internet environment. Its aim is to provide a technology that targets

common questions of web application development such as request variables, sessions,

simultaneous requests, forms or repeatedly used page elements, thereby avoiding the need

to wrap Prolog solutions into an existing web technology (such as jsp or asp .net) for

the sake of web presentation.

Prosper is built up of two major components: Prolog Web Container and Prolog Server

Pages. Prolog Web Container provides the background for server pages by automating

communication tasks and http-specific functionality with added support for persistence.

Essential

5

CHAPTER 1. INTRODUCTION 6

In order to demonstrate that the architecture outlined is sound, a reference imple-

mentation in SWI-Prolog is given. Utilizing multi-threading, partial evaluation of server

page documents, automated synchronized access to shared resources, the implementa-

tion is intended to be a suitable tool for middle-size applications with web interfaces. All

functionality implemented is then demonstrated by a sample application.

Chapter 2

Existing libraries for the web

environment

Prior to presenting Prolog Server Pages Architecture, an overview of existing web libraries

available for Prolog is given. Two major representatives, PiLLoW, a web support library,

and PrologBeans, a Java interface, are thoroughly analyzed. It will be shown that while

these libraries are useful in themselves and back several aspects of developing applications

for the web, neither of them can be considered a comprehensive solution. While this

analysis of existing libraries does not strive for completeness and not every available

library is listed, all key benefits and problems are outlined.

2.1 PiLLoW

Programming in Logic Languages on the Web (PiLLoW) is a public domain web program-

ming library which simplifies the generation of html and xml pages by representing them

as Herbrand terms, extracting information posted via forms through predefined predicates

and access to http header data. It provides a simple template mechanism that is capable

of on-the-fly substitution of markup attribute values and of content at predefined places.

In addition, it empowers Prolog to act as a Common Gateway Interface (cgi) application

by providing simple utility predicates to access execution environment. [10]

2.1.1 Markup generation with templates

The authors of PiLLoW have realized that representing well-formed html and xml con-

tent as a stream of characters is impractical in the Prolog environment, but the hierarchical

tree structure of these markup languages can easily be adopted to suit the needs of a Pro-

log programmer. An element can be directly mapped into a term comprising of the name

7

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 8

(generic identifier), attributes and contents of the element. Attributes are stored as a dic-

tionary of name-value pairs in the order they occur in the source, while element content

is a list of enclosed elements (mapped to terms) and as-is text (atoms or strings) in order

of appearance.1 It can be easily seen that the definition of this mapping is recursive. The

example below shows a simple application of the transformation:2

<html>

<body lang="hu">

<h1>title</h1>

text

hyperlink

</body>

</html>

env(html, [], [

env(body, [lang=hu], [

env(h1, [], [title]),

text,

env([ref=’http://dp.iit.bme.hu’], [

hyperlink

])

])

])

It can be realized that the transformation from html or xml is reversible, the map-

ping is a one-to-one correspondence. However, when generating html content using Prolog

terms, this rigid representation is often inconvenient. PiLLoW extends the term represen-

tation to include simpler notation for frequently used html elements. Unlike env/3, they

exploit the meaning of the html tags they represent:

• img(Source)

img(’http://dp.iit.bme.hu/dp.png’)

• img(Source, Attributes)

img(’http://dp.iit.bme.hu/dp.png’, [alt=’dp’])

1The iso standard for Prolog does not include a separate type for an efficient representation of strings.
Hereafter, the term string refers to a list of character codes. Nevertheless, some Prolog implementations
define a separate string type. It is explicitly noted if the term string is used in this sense.

2For the sake of clarity, whitespace has been removed from the term representation; in actual PiLLoW
terms, it is included.

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 9

• ref (HRef, Text)

ref(’http://dp.iit.bme.hu/ets’,’ETS’)

ETS

• heading(Level, Text)

heading(2, ’Subtitle’)

<h2>Subtitle</h2>

• itemize(Elements)

itemize([apple,banana,cherry])

applebananacherry

• enumerate(Elements)

itemize([apple,banana,cherry])

applebananacherry

• verbatim(Text)

verbatim(’<!-- not to be interpreted as comment -->’)

<!-- not to be interpreted as comment -->

The html form of the previous example might, for instance, be generated by the

following set of convenience terms:

env(html, [], [

env(body, [lang=hu], [

heading(1, title),

text,

ref(http://dp.iit.bme.hu, hyperlink)

])

])

The discussed transformation from html and xml to Prolog would contribute in itself

little to generation of markup content, however, through uninstantiated variables Prolog

provides a straightforward way of representing templates. Templates are full-fledged html

and xml structures except that certain branches of their tree representation are missing

and some of their attribute assignments lack the value part. PiLLoW represents tem-

plates via special xml constructs: the element v replaces missing branches, lacking values

in attributes are signaled by names beginning with an underscore (e.g. name). Upon

transformation into a term, these constructs in templates are replaced by uninstantiated

variables rather than ground terms. A dictionary is built which contains name-variable

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 10

pairs in which the name part is derived from the construct itself: either the text content

of the node v or the trailing characters after the underscore in attribute values. By in-

stantiating variables, a template is transformed into a proper tree. An example is given

below:led by names beginning with an underscore (e.g. name). Upon transformation into

a term, these constructs in templates are replaced by uninstantiated variables rather than

ground terms. A dictionary is built which contains name-variable pairs in which the name

part is derived from the construct itself: either the text content of the node v or the

trailing characters after the underscore in attribute values. By instantiating variables, a

template is transformed into a proper tree. An example is given below:

<html>

<body lang="_language">

<v>content</v>

</body>

</html>

env(html, [], [

env(body, [lang=A], [B])

])

After the transformation has taken place, the dictionary will be instantiated to the

list [language=A, content=B]. Unifying A with hu and B with ref (’http://dp.iit.bme.hu’,

’hyperlink caption’), a compound term representing a valid html page will come to exis-

tence:

<html>

<body lang="hu">

hyperlink caption

</body>

</html>

2.1.2 User interaction

A substantial amount of the html specification deals with forms. An html form is a

section of a document containing textual content, markup, special elements called controls

(checkboxes, radio buttons, inputs, dropdown lists, etc.), and labels on those controls.

Users generally “complete” a form by modifying its controls (toggling a checkbox, entering

text, selecting an item, etc.) prior to submitting the form to the http server for processing.

[21]

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 11

Common Gateway Interface

Form handling provided by PiLLoW is based on the assumption that the Prolog inter-

preter is operated as a cgi application. cgi applications are programs written in any

programming language that conform to the interface prescribed by the specification: they

are launched by the invoking program, read any http client-related data from their

standard input and environment variables, write results on their standard output (and

standard error, when appropriate) and terminate. [5]

In a regular cgi scenario, an http request is received by a web server, which makes

request-related information available through environment variables, invokes the cgi ap-

plication and passes the body of the request (if any) to its standard input. Most frequently,

data of a request derive from an html form. Provided that the submission method for the

form is get, a list of url encoded name=value pairs, adjoined by ampersands is available

in the QUERY STRING environment variable. For post requests, this data appears on

the standard input stream. Names correspond to html form element names supplied with

the name attribute. Encoding ensures that illegal characters do not appear in the url by

converting them to %xx sequences, where xx are hexadecimal codes in the range 00-ff.

After having been launched, the application performs a custom operation and prints any

results on the standard output, which is directed back by the web server to the client

which initiated the request. The application should supply the appropriate http headers,

in particular, content type. [16]

Helper predicates

While the cgi protocol is simple in itself, one may easily see that it involves several repeti-

tive tasks that need to be solved regardless of the particular application one is developing.

When a Prolog program is launched to handle a request, PiLLoW provides utility pred-

icates that extract data passed via forms for either request type, freeing programmers

of the tiresome job of manually processing environment variables and parsing standard

input to obtain values tied to specific form controls. Thereby, the particular details of the

cgi protocol are hidden from the programmer, valuable development time is saved.

Limitations

Although it parses post data that derives from forms, xml http requests are not sup-

ported by PiLLoW. Used in client-side scripting, this technology allows sending xml

embodied in http post requests. Constructing xml queries and processing replies of the

same format, clients can provide a rich user interface without a need to requery the entire

page. The technology can save considerable bandwidth and is used in web applications

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 12

such as GMail. [17]

2.1.3 Evaluation

Though a suitable solution for many simple applications, PiLLoW in itself fails to provide

general support for developing for a web environment. While the template mechanism

it defines facilitates the easier generation of html and xml content, it is not powerful

enough to be employed widely. Conditional inclusion of markup fragments or iteration

is not directly supported; Prolog code has to be implemented to instantiate a variable

marked in the template beforehand to achieve conditional generation of content, while

iteration requires constructing a list of ground terms which will replace a marked template

element. While these tasks can be automated, PiLLoW leaves such issues to the library

user. In general, PiLLoW provides no clear separation of model and view: the two become

inherently intermixed as much effort is needed to provide control flow within the view.

In the classical Model 2 architecture, model, which encapsulates business logic, and view,

which provides the user interface to this logic are cleanly separated and may be developed

independently. PiLLoW, a useful tool in itself, is insufficient to this end.

As a library which hides the cgi interface from the programmer, PiLLoW can be

employed to provide simple web services. However, http in itself is stateless and cgi

includes no mechanism to provide application state. As cgi applications are initiated and

terminated for every single request, the solution is difficult to scale: a serious speed penalty

is incurred. PiLLoW, while it provides support for http post, xml http requests, which

are employed in client-side scripting to avoid having to requery the entire page, are not

supported. PiLLoW is clearly not an optimum choice for applications that rely on sessions

or consume substantial resources such as processing external files or maintaining database

connections.

2.2 PrologBeans

PrologBeans is a SICStus extension to provide a Java interface to Prolog processes. The

package is designed in a service-oriented view, it is aimed at providing a graphical Java

front-end for complex Prolog applications. In a typical scenario, a Java-side client utilizes

Prolog functionality by creating a query and binding Java variables to uninstantiated

variables of the created goal. The query is then forwarded to a Prolog process for execution,

when ready, computed results are returned to Java wrapped into an object. [3]

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 13

Web application
running on an

application server

PrologBeans

Java application

PrologBeans

PrologBeans

Prolog application

Users accessing via
web interface

Users accessing via
Java GUI

Figure 2.1: Java to Prolog interconnectivity: the PrologBeans architecture (adapted from
[4])

2.2.1 Querying Prolog from Java

PrologBeans consists of two stubs: the Java package se.sics.prologbeans and the Prolog

library prologbeans, transparently facilitating the tcp/ip-based communication between

the Java Virtual Machine (jvm) and the Prolog engine (Figure 2.1). In order to execute

Prolog goals, a Java object must seize a PrologSession object. This represents a connec-

tion between Java and Prolog: multiple Java threads are allowed to communicate with a

single Prolog process and multiple Prolog processes are allowed.3 Goals are executed by

parameterizing the executeQuery method of a PrologSession object. The class Bindings

ensures that Java variables are properly delimited when used in Prolog context, for in-

stance, atoms are surrounded by single quotes. The example below shows how the Prolog

query evaluate(’PrologBeans’, Out) is run from Java:

QueryAnswer answer =

session.executeQuery("evaluate(In,Out)",

new Bindings().bind("In","PrologBeans"));

3In this architecture, multiple Prolog processes cannot share data and can hence be utilized only for
speed improvement of concurrent stateless requests.

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 14

Execution is synchronous: the Java thread is suspended until query results from Prolog

arrive wrapped in a QueryAnswer object. This class provides methods to test whether

the goal could be proved and indicate if an error occurred. Results are accessed as Term

objects, which is the Java counterpart of the Prolog term.

2.2.2 Receiving Java queries from Prolog

Queries from Java are handled by hooks preregistered using register query(+Query, :Pred-

icateToCall, +SessionVar).4 Query is a Prolog term that corresponds to that constructed

when calling executeQuery in Java. PredicateToCall is an arbitrary predicate and is

used to perform any Prolog-side operations. SessionVar signifies the session identifier

associated with the request. Prolog, as an interpreted language, is susceptible to insertion

and execution of malicious code via call/1. Preregistration increases security by allowing

only predefined goals to be run from Java.

2.2.3 Sessions

PrologBeans supports sessions implemented through assert/1 and retract/1 at the Prolog

side. When parameterizing a getPrologSession call, a session parameter is provided by the

Java client implementation, most commonly as an HTTPSession object. This transmitted

to the Prolog server along with each query: any registered queries receive this as an

argument. Session identifiers are used in predicates session get/4 and session put/3. The

hook register event listener/2,3 allows for arbitrary Prolog goals to be executed when a

session is started or ends. [4]

2.2.4 Evaluation

PrologBeans, as a Java interface to Prolog, provides an embedding of Prolog technology

into a Java environment, thereby exposing Prolog functionality to any Java-related tech-

nology. Socket-based communication allows independence from jvm memory management

and enables Prolog to be run on a different machine. Multiple Prolog instances – if data

does not persist through sessions – allow for decomposition of larger tasks. The platform-

independence of Java and the availability of Prolog on numerous systems provides for

architectural independence.

Nevertheless, a major drawback of employing PrologBeans in web application develop-

ment is that knowledge of both Java and Prolog programming languages is assumed. As

Java is often required only for the presentation layer and performs no actual processing,

4Following standard Prolog convention, + denotes an inbound argument and : a term that may occur
as a legal argument to call/1.

CHAPTER 2. EXISTING LIBRARIES FOR THE WEB ENVIRONMENT 15

it seems straightforward to remove it from the service chain. It would be more practical

if Prolog itself could provide the view instead of relying on Java to this end. However,

applications that heavily make use of Java’s gui capabilities could still benefit from Pro-

logBeans.

In addition, PrologBeans does not automatically leverage multi-threading offered by

Java. Multiple simultaneous requests, unless manual balancing is employed, are served

by a single Prolog instance. For cases in which data persists on the Prolog side, sessions

in particular, any gain exploited through multi-threading is inhibited by serialization of

requests as they are served by a single Prolog engine.

Chapter 3

Prolog Server Pages Architecture

The shortcomings of existing web libraries for Prolog having been outlined, one can see

that in order to battle the intricacy of developing web applications yet remaining in the

Prolog domain, common aspects of generic tasks are to be automated and made trans-

parent. In addition to hiding details of the Hypertext Transfer Protocol, it is practical

to provide mechanisms that give access to information received via requests in a manner

natural to Prolog. The stateless nature of http is to be wrapped into session man-

agement that enables data to persist through requests. It is essential that while being

convenient to use, the solution should not hinder scalability. Multi-threading capabilities,

while remaining invisible to the Prolog programmer, should be exploited to achieve proper

load-balancing of concurrent requests.

For applications that incorporate complex user interaction via web pages, view and

logic are to be separated. Designing view should not demand expert knowledge of Prolog,

while logic should not contain any visual information intended for presentation. On the

other hand, view should offer mechanisms for conditional inclusion of fragments, repetition

of fragments with multiple variable substitutions, dynamic creation of elements or content

that is dependent upon the context in which pages are displayed.

In order to meet these goals, a multi-layered architecture, similar to that used in the

Java 2 Platform, Enterprise Edition (j2ee) is proposed.

3.1 Own contributions

Analyzing the requirements for a suitable architecture, the author sketches a design that

meets the conditions imposed. The basics of the http protocol and low-level interaction

with the environment are covered by the Prolog Web Container. It addresses questions

of communicating with a web server, receiving requests and generating replies, providing

persistence of sessions and a view of http environment natural to the Prolog programmer,

16

CHAPTER 3. PROLOG SERVER PAGES ARCHITECTURE 17

thereby providing a background for Prolog Server Pages.

Prolog Server Pages are a simple yet powerful extensible mechanism to declaratively

define dynamically created web pages that are separate from business logic. Modeling

other similar technologies, they provide a basic set of control flow elements adopted to

the Prolog programming environment. In addition, an expression language offers simple

computed logic to be incorporated into Prolog Server Pages. A flexible extension mecha-

nism complements the available basic set of elements.

Having outlined a novel approach to provide web interface for Prolog applications, a

reference implementation shows that the design put forward is indeed reasonable. Just as

Prolog Server Pages Extensible Architecture design, the implementation is entirely own

contribution. As no comparable Prolog technology to provide extensive support for web

applications exists to-date, the paper includes a sample application that illustrates the

entire set of capabilities offered by the reference implementation.

Chapter 4

Prolog Web Container

A web container, in Java terminology, is a part of a web server or application server that

provides the network services over which requests and responses are sent. It contains and

manages the so-called servlets, components that generate dynamic content, through their

lifecycle. [14]

Similarly, a Prolog Web Container serves as an execution environment for Prolog

modules that respond to http requests by printing output when invoked. The container

hides network-specific tasks from encapsulated code by parsing incoming requests, assert-

ing facts specific to the request environment (url, form data passed via get or post,

etc.), managing sessions, calling a well-defined entry goal in the user-defined module and

wrapping the response generated by the module into an http response.

4.1 Design considerations

In designing a web container, the questions of transparency, concurrency and persistence

are answered with respect to the extent a web server and web container are integrated,

how simultaneous requests are serviced and how shared data is stored.

4.1.1 Level of integration

Stand-alone server The strongest level of integration, a stand-alone server unifies

web server and container functionality accepting http connections bound to a predefined

port. The primary advantage of this architecture is simplicity: no extra communication

channels are required between processes while socket interfaces and http processing fea-

tures available to some Prolog implementations can be harnessed; hence only one system

architecture is used in design. However, such implementations often lack advanced fea-

tures (concurrent request handling, URL rewriting, etc.) and combining the approach

18

CHAPTER 4. PROLOG WEB CONTAINER 19

with existing web servers listening on the standard http port may pose problems. Com-

munication through a proprietary port might also be blocked by firewalls. In addition,

common http features, which already have optimized solutions for web servers, need to

be reproduced. Security and reliability are two requirements that opt for re-using existing

web servers. All these question if Prolog is suitable as a general-purpose web server.

Web server APIs Application Programming Interfaces (apis) allow complementary

functionality to be added to standard web server services. Script languages – php for

instance – provide dynamic linking libraries to be used with web servers, thereby empow-

ering them to interpret designated scripts. Dynamic linking libraries used in this manner

represent a strong coupling to servers, they have to be carefully implemented not to pro-

voke unstability for the entire web server. In addition, such libraries are intended for a

single server only, servers by different vendors (and very likely, of different versions) may

not reuse libraries. The primary advantage of apis is speed and efficiency, this is clearly

a crucial advantage that promotes the wide-spread use of this architecture.

CGI application A Common Gateway Interface (cgi) application is a short-lived

process that is initiated by the web server to respond to a single request (see 2.1.2).

It requires no direct implementation of http-specific features on the Prolog side and

maintains independence from the web server. This independence, however, comes at a

cost: startup overhead upon initialization is considerable, especially in the case of Prolog

code. Also, sharing data between requests requires additional effort: databases or tempo-

rary files need to be utilized to store persisting data such as sessions. On the contrary, cgi

is supported by virtually every web server available and little programming is required to

transform a solution into a cgi-compliant one. [5]

FastCGI application A FastCGI application is a long-lived process that combines

the advantages of a stand-alone server and the cgi approach. Contrary to cgi, FastCGI

applications are persistent, that is, they usually remain active after having served a re-

quest. They communicate with the web server via the FastCGI protocol, making them

independent, hence the solution becomes flexible (Figures 4.2 and 4.3). They make both

multi-process and multi-threaded solutions feasible.

In a typical scenario, an http request from a given client is received by the web

server. The web server – either by extension or by path – determines that a request

is to be forwarded to a FastCGI application. If the application is not yet running, it

is started by the server. A communication link is established: unlike cgi, FastCGI is

not tied to a specific method, operating system pipes or tcp/ip sockets may both be

used; FastCGI applications can thus run on a different machine than the web server.

CHAPTER 4. PROLOG WEB CONTAINER 20

FastCGI
application

web server

10: FCGI_END_REQUEST(FCGI_REQUEST_COMPLETE)

9: FCGI_STDOUT()

8: FCGI_STDOUT(reply record 2)

7: FCGI_STDOUT(reply record 1)

6: FCGI_STDIN()

5: FCGI_STDIN(standard input data record 1)

4: FCGI_PARAMS()

3: FCGI_PARAMS(parameters record 2)

2: FCGI_PARAMS(parameters record 1)

1: FCGI_BEGIN_REQUEST(FCGI_RESPONDER)

all data to serve request
(standard input and
environment variables)
is available, processing
may commence

parameter records are
concatenated, the
resulting stream is split
up into name-value pairs

end of response

Figure 4.1: Sequence diagram for the FastCGI responder scenario

A notable distinction between the two protocols cgi and FastCGI is the availability of

environment variables: in the case of FastCGI these cannot serve as a per-request way

of transmitting information and are available for initial configuration of the application

only. To overcome this difficulty, the FastCGI protocol defines an interface for sending

name–value pairs, which serves the same purpose as environment variables in the case of

cgi: submitting data associated with the http request header. The body of the request

is tagged accordingly and also transferred to the FastCGI application following the list of

name–value pairs. The application responds with data and error streams wrapped into a

FastCGI response, which after having been received by the web server, results in an http

response. This particular scenario is referred to as the responder role by the specification

(Figure 4.1). [9]

Due to the benefits discussed above, the choice for the proposed architecture is FastCGI

as it maintains independence from web server solutions yet remaining efficient in terms of

overhead. Many popular web servers incorporate extensions for FastCGI support, notably

Apache 1.x and 2.x series used in conjunction with mod fcgi. [2]

CHAPTER 4. PROLOG WEB CONTAINER 21

browser web server FCGI app.
application ←− http −→ application application ←− FastCGI −→ application
transport ←− tcp −→ transport transport ←− pipe −→ transport
network ←− ip −→ network
data link ←− ppp −→ data link

Figure 4.2: Integration of a FastCGI application into a web environment in which the web server and
the application run on the same machine (based on [23])

browser web server FCGI app.
application ←− http −→ application application ←− FastCGI −→ application
transport ←− tcp −→ transport transport ←− tcp −→ transport
network ←− ip −→ network network ←− ip −→ network
data link ←− ppp −→ data link

Figure 4.3: Integration of a FastCGI application into a web environment in which the web server and
the FastCGI application run on separate machines

4.1.2 Process and thread model

Single-process, single-threaded model Being the simplest approach, all services

provided are integrated into a single-threaded process in the model. While easiest to

implement, concurrent requests are queued and a computation- or database-intensive

request can block servicing others. In addition, non-responsive tasks can seriously harm

performance. Therefore, this choice is inadequate to the needs of an efficient web-related

system.

Single-threaded, multi-process model A multi-process approach overcomes the dif-

ficulty of concurrent requests by launching multiple single-threaded processes. As most

Prolog implementations are single-threaded, this solution can be defended on practical

grounds, especially as existing performance management techniques can be re-used to

achieve load-balancing. The major difficulty here one has to battle with is data sharing.

Unlike threads, processes have distinct data space; inter-process communication needs to

be incorporated into the system to implement document caches and sessions. An option

is the usage of Linda: a single-server, multiple-client blackboard solution that serializes

incoming requests. The server implements a global storage of tuples, which is read and

written by connecting clients via primitives in/1, rd/1 and out/1 in a synchronized man-

ner. It is possible to bring a FIFO queue into existence: the primitive in/1 not only reads

but also removes data from the server blackboard. [12] Such mechanism can be used to

dispatch individual tasks to a set of available clients and in this sense it substitutes the

commonly used worker-thread model. However, serious speed penalties may be incurred:

the efficiency gained by the caching may be lost due to the extra communication overhead.

CHAPTER 4. PROLOG WEB CONTAINER 22

Managing sessions may be overcome by using external databases, in this case, atomicity,

consistency, integrity and durability are provided by a relational database.

Multi-threaded model In the classical multi-threaded model, each request is assigned

a separate thread, which eliminates queuing and implicit serialization of requests. The

most crucial advantage of this approach to multi-process models is the ability to integrate

every operation in one process, allowing common data to be shared. For applications that

rely heavily on data exchanged between threads, the difference is immeasurable. On the

other hand, care must be taken to synchronize access to shared resources, which imposes

additional difficulty on the programmer. Moreover, inadequate precaution in program-

ming (dereferencing uninitialized pointers, etc.) may lead to the instability of the entire

process in which threads are running; access violations or segmentation faults, in partic-

ular, will cause the process and thereby all threads to be terminated. In addition, few

Prolog implementations support multi-threading; this restricts choice of implementation.

Nevertheless, while superior to multi-process solutions in terms of performance, it may

also respond poorly to a large number of concurrent requests. As each request initiates a

new thread, heavy load implies numerous simultaneously existing threads; allocated cpu

time slices quickly diminish. As there is associated cost with thread administration upon

context switching, measured performance may easily decline.

Worker thread model In this architecture, concurrent requests are handled by parallel

so-called worker threads. The major difference between this approach and the classical

multi-threaded model is twofold: threads are not associated with a request but persist

between them and the number of existing worker threads is limited. Requests are received

by a server thread and dispatched to an idle worker thread. The worker thread processes

the pending task; when ready, the it returns to available state. If no worker thread is

idle when the server receives a request, it is placed in a first-in first-out queue. (Figure

4.4) While performance may be tuned by dynamically creating and destroying threads

to reflect server load, extreme conditions do not result in severe decline of performance

for tasks whose execution has already begun. The worker thread model approach is used

in the case of the Apache 2 series and Microsoft .net. [11] The proposed architecture

takes advantage of the worker-thread model (without dynamic tuning of the number of

threads) as it wishes to enjoy the benefits of multi-threading while remaining responsive

to considerable load even in spite of increased programming effort required.

CHAPTER 4. PROLOG WEB CONTAINER 23

Incoming HTTP
requests

FIFO queue

Pool of worker
threads

Figure 4.4: The worker-thread model

4.1.3 Synchronization and data sharing

Synchronization in Prolog

In a multi-threaded environment, access to shared resources needs to be synchronized.

Two commonly known approaches provided by posix are mutual exclusion and condition

variables. Mutual exclusion devices work by allowing only a single thread to hold a mutex

at a time. Condition variables suspend thread execution until a certain condition becomes

true: when other threads modify the variable, the waiting thread is notified so that it may

re-examine the condition. Using these in a Prolog program, however, is obtrusive.

A feasible alternative is the application of FIFO queues: threads connect to a queue,

and listen for incoming messages. In case data is put into the queue, listening threads

awake and one seizes possession of the data, which is then removed from the queue (race

condition). A worker-thread model can naturally rely on this technique for dispatching

tasks received by the accepting thread.

Nevertheless, in some cases, the traditional approach using mutexes might also be

utilized. If data that exists in a global store is to be modified, invariants have to be

maintained. While a thread is modifying data, other threads may either see the initial or

the final state of the data but not an intermediate (much likely inconsistent) state. This

requires an indivisible test-and-set operation that prevents other threads from accessing

data while it is being altered.

CHAPTER 4. PROLOG WEB CONTAINER 24

Data sharing in Prolog

The power of multi-threaded solutions can be harnessed only if an efficient method exists

to share common data. Linda-based multi-process models accomplish this by serializing

incoming requests at the server.1 The multi-threaded alternative is critical sections or

mutual exclusion. Certain data operations, however, require invariants to be maintained.

For instance, while a template file is being read into memory by a thread, another thread

that relies on the same file should not begin a distinct import operation. On the contrary,

it should be suspended until the operation finished and should resume execution then.

4.2 Differences from Java Servlets

In the j2ee architecture, Java Server Pages heavily build upon the existing Java Servlet

technology. Servlets already hide many of the details related to a web environment but

provide only a modest, Model 1 architecture: model and view are not at all separated,

following the design pattern common to conventional cgi applications while providing

improved performance through persistence. Java Server Pages translate into servlets and

hence encapsulate all functionality yet satisfying the requirements of Model 2 architecture.

The translation is done at compile time. The Prolog solution is designed with requirements

of model and view separation in mind and thus does not differentiate as clearly between

web container and server pages architecture. As term representations are inherent to

Prolog, no compilation of documents are done, rather, though preprocessed, they are

interpreted on-the-fly, which allows for dynamic manipulation of content.

1SICStus Prolog offers library(linda). A SICStus-based implementation of Prolog Server Pages Archi-
tecture should consider using the library.

Chapter 5

Prolog Server Pages documents

A Prolog Server Pages (psp) document is a text file that conforms to the xml 1.0 stan-

dard. [8] Thus, all PSP documents must be well-formed xml documents. On the other

hand, elements belonging to a special namespace, some attributes of the root element

and attribute values with a distinctive syntax are reserved or treated specially: a simple

syntax molds to a powerful template.

First, a discussion of representing arbitrary xml content as Prolog terms is given,

followed by the description of how psp pages are stored in the so-called intermediate

representation, which is a modification to the aforementioned xml term representation.

Variables, which are named content with visibility constrained to the declaring element’s

siblings and their descendants, are introduced. Throughout psp documents, a rich ex-

pression language is at the user’s disposal, this is then discussed. Control flow in psp

documents is achieved via functional elements; their declarative semantics are given. The

section terminates with the extension mechanism that allows incorporating new functional

elements with user-defined behavior into the existing set of such elements.

5.1 Representing server page documents

5.1.1 Term representation of an XML document

As previously seen in the case of PiLLoW, it is straightforward to represent xml, a struc-

tured markup language as a Prolog term. xml itself corresponds to a tree, which is a

severe limitation in some applications, inhibiting the representation of variously intercon-

nected pieces of information, but handy in situations where the easiness of a well-defined

structure can be exploited. Here, the Prolog representation of xml is always a ground

term and has the following general form: element(ElementName, ListOfAttributePairs,

ListOfEnclosedContent).

25

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 26

• ElementName represents the resolved name of the element, either as an atom or as

a compound term Namespace:Name, whichever appropriate.

• xml attributes can be seen as additional information attached to an element and

as in PiLLoW, they are stored as Name=Value pairs in ListOfAttributePairs.

• Element content is composed of a list of strings 1 and compound terms, the latter

of which may have any of the following functors:

– sdata/1 for string data,

– ndata/1 for numeric data,

– pi/1 for processing instructions or

– element/3 which allows for nesting of elements.

This representation allows for a lossless mapping: the transformation into a Prolog term

can be fully reversed, provided that whitespace collapsing is disabled.2

5.1.2 The intermediate representation

Contrary to PiLLoW, it is not uninstantiated variables that distinguish the intermediate

term representation of a Prolog Server Page from a regular xml document. Prolog Server

Pages use predefined naming conventions and notations to signify special meaning. While

not discernible from the initial xml term representation, a second pass on the structure

detects and transforms these elements.

The intermediate representation is the simplest possible form that is not context- and

target representation-dependent and as such is a sound architectural decision. Namespaces

are resolved, built-in operations are identified, simplifications are made, existence checks

for extensions are performed and constant expressions are evaluated when transforming

an xml Prolog representation into an intermediate one; these are all one-time costs that

are incurred only at page initialization, further requests do not pay these costs. On the

other hand, the intermediate representation is flexible enough to allow being output in

various formats (including html, xhtml and xml) with multiple variable substitutions.

Elements whose name is qualified with the namespace psp map to built-in behavior

including conditional embedding, iteration, variable assignment, value insertion, dynamic

element creation or caching; their term representation of element/3 is transformed into

builtin/3, cached/2, variants of capture/2 or insert/1. Elements whose name is qualified

1Here, the term string refers to a separate type. For implementations that do not define it, atoms can
be used. Strings are more efficient in terms of overhead when only single instances exists. Within the
Prolog Server Pages chapter, strings are always used in this sense.

2Whitespace is always collapsed within tags but not within attribute values.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 27

with a previously registered namespace 3 map to extension/3. Attribute values that are

enclosed within braces are treated as expression language terms and evaluated or simplified

based on whether they consist of purely constants or contain variables as well.

5.1.3 Target-independent representation

Though syntactically identical to xml representation in all aspects, for the sake of clarity,

a distinction is made: target-independent representation is the basis for final markup

output generation and thus contains no control flow instructions (conditionals, iterations,

etc.).

5.1.4 Relationship of representations

The term representation of xml documents is preprocessed into intermediate represen-

tation. Intermediate representation terms are transformed into target-independent repre-

sentation through the process page evaluation. The latter transformation requires context

information, that is, variables are bound and propagated. Target-independent represen-

tation, which bears the most resemblance to the final format, is output upon request.

5.2 Variables

Throughout psp documents, variables are utilized to associate a name with specified

content. Variables fall into two distinct categories: implicit and explicit. Implicit variables

are globally available 4 and used to query context information such as psp document

name or path. Explicit variables are defined by the psp document author and local to

the context in which they are defined. “Local context” refers to those descendants of

the parent of the declaring element that follow the declaring element, that is, preceding

siblings are excluded. This is identical to how variables are used in xsl transformations.

[13] Variables with smaller scope cover the visibility of variables of the same name but

broader scope, if such behavior is not intended, renaming should be employed.

Explicit variables are further classified into two categories. Simple variables represent

numeric or string content, in other words, satisfy the predicate atomic/1. Compound

variables come to existence by having assigned a name to an intermediate representation

term. Implicit variables are always simple. When required, variables are coerced to match

the context in which they are used. Simple variables become element lists of a single

3Namespaces that map to user-defined functionality are listed in the configuration file.
4Or, in other sense, locally available to the root element.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 28

member, which corresponds to the simple variable, compound variables are “written into”

a string as if by write/1.

5.3 Expression language (“EL”)

Attribute values surrounded by braces ({}) distinguish usage of expression language (el)

syntax. Expression language allows placing simple expressions in attributes, which is eval-

uated prior to any further processing of the element. This behavior, combined with the

power of functional tags, can be utilized to incorporate complex logic into psp templates.

Contrary to jsp, psp expression language cannot occur outside attributes, notably, such

constructs are ignored in element content.5 [22]

Expression language constructs are typed. Three basic types are distinguished: num-

bers, strings and Booleans. Numbers include integers and floats and may be used as inputs

for arithmetic expressions. Strings can be concatenated, checked for identify, searched and

their length calculated. Boolean expressions include the special atoms true and fail, and

may be preceded or adjoined by Boolean operators not (\+), and (comma), or (semi-

colon). Ways exist to convert one type into another: notably Boolean expressions often

come into existence as results of comparisons.6

5.3.1 Arithmetic expressions

An arithmetic expression is a term that evaluates to a number, either integer or float.

This includes numbers (expressions that cannot be simplified), special constants (e, pi),

unary and binary operations and arithmetic functions (sqrt, sin, etc.). As a rule of thumb,

one may identify an arithmetic expression by recognizing it as a legal second argument of

is/2. The cast function number is provided to convert other types into numbers. Should

the cast fail, the expression evaluates to the special constant null.

Arithmetic comparison

A comparison expression is of the form Term Operator Term, where Term is any arithmetic

expression, and Operator is one of eq, neq, lt, gt, lte and gte corresponding to the

Prolog operators =:=, =\=, <, >, =<, >=, respectively.

5This is a cleanliness consideration: dynamic content generation is thus constrained to elements. A
distinct element psp:insert is provided to achieve the same functionality in Prolog Server Pages as in
jsp.

6The appendix Expression language provides a complete list of arithmetic, string and Boolean opera-
tors and functions at the user’s disposal.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 29

5.3.2 String expressions

Atoms and data derived from globally-scoped variables (e.g. http get and http post) clas-

sify as strings. String expressions combine strings by concatenation or create substrings

by slicing. Numbers are converted into strings by means of a cast, which always succeeds.

String comparison

Strings are compared using the operators iden and niden (corresponding to Prolog op-

erators == and \=). Built-in collation is not supported.

5.3.3 Boolean expressions

In addition to the special constants true and fail, results of comparisons and string

searches are Boolean expressions. Boolean expressions are combined using negation (\+),

conjunction (comma) and disjunction (semicolon).

5.3.4 Invalid expressions

Expressions that would otherwise cause an exception are evaluated to the reserved con-

stant null. This occurs when an expression of the wrong type is supplied (for instance,

adding two strings by means of + rather than using concat/n) or an arithmetic expression

cannot be computed (division by zero). Any expression containing null is itself null. If

nulls are used in a condition, built-in tags output empty results, even if an else branch is

present. This semantics relates closely to the three-state logic commonly used in relational

database systems. The is null functions is provided to detect nulls. nulls cannot be cast.

5.3.5 Variables in expressions

Previously assigned variables are available for use in el as strings. Variables are referred to

via the function variable(Name), Name corresponding to the name of a variable available

in the local context. If no variable of the given name exists, the expression evaluates to

null.

5.3.6 Magic quoting

As single and double quotation marks are disallowed in well-formed xml attributes, when

required, atoms in attributes may be quoted by | and lists of character codes by ||.

For designers that construct psp pages, the usage of ' and " is the preferred

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 30

way of circumventing this limitation of xml. Magic quoting is globally controlled in the

configuration file.

5.3.7 Expression language evaluation

Just as Prolog Server Pages have three representations based on their state: initial xml,

intermediate and final (which contains purely output information), expression language

terms share similar phases: unevaluated form, simplified form and evaluated form. The

unevaluated form corresponds to the structure that results after having read the attribute

value into a Prolog term and substituted any occurrences of variable/1 with an uninstan-

tiated variable. (In this phase, a dictionary is built of the name-variable pairs.) During

the transformation of a page into an intermediate form (preprocessing), a simplification of

unevaluated expressions is attempted. In general, unevaluated expressions containing no

variables or context references reduce to a constant, though reduction may also be possible

in other cases; expressions containing variables remain unevaluated albeit in simpler form.

During evaluation, all variable substitutions are made and all expressions must simplify

to a constant. If this is not the case, the expression relies on an undeclared variable, which

should indicate an error. Erroneous expressions evaluate to the special constant null.

5.4 Declarative semantics of functional elements

Elements belonging to the namespace psp are processed upon page evaluation, the ele-

ment itself being replaced by the content it generates. This is done in a recursive manner:

encountering a functional tag, based on the attributes it is labeled with, it optionally

evaluates its content with a single or multiple variable bindings. Strings and static con-

tent evaluate to themselves, therefore the transformation will terminate. This mechanism

is similar to but simpler than the one used by Extensible Stylesheet Language Trans-

formations (xslt). Some attributes have general meaning and are shared by multiple

elements:

• The attribute var refers to a previously assigned variable. As a value, a variable

name is required. The variable must be available in the local context.

• In the attribute goal, the user must supply a Prolog predicate or a series of pred-

icates. Predicates should not contain a module specifier and should be available in

the context of the attached logic module.

• The attribute function serves to refer to predicates that return a value. This at-

tribute is typically used in iterative constructs. As a value of function, only a single

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 31

predicate can be used, for which a counterpart must be available in the context of

the corresponding logic module. This counterpart must have an additional argu-

ment than specified in the attribute, which is an uninstantiated variable that will

be unified with the return value. This semantics is similar to functions as used in

the Mercury language.

• The attribute expr is generally used in conjunction with expression language syntax.

The value is used as-is, without any further transformation or dereferencing. (Note

that expression language is always evaluated prior to any further processing, except

for special contexts. An expr=”{1+2}” is hence equivalent in this sense to expr=”3”)

• Source files are referred to by the src attribute. Expression language cannot be

used to dynamically generate source file names, this is a security consideration,

which applies to psp:import and psp:include elements.

5.4.1 Choice of elements

While the choice of elements may seem arbitrary, the intention was to choose a basic set of

elements and allow definition of added functionality through an extension mechanism. The

php templating engine, Smarty offers as built-in functions if, foreach and section for

control flow, include for inclusion of external page fragments and capture and insert

to assign data to variables and access variables and context information, respectively.

[20] The jsp core tag library contains set and remove for variable support, if, choose,

forEach and forTokens (a variant of forEach) for flow control, import for inclusion

of fragments, redirect for redirection, url for url-rewriting (to support propagating

session identifiers in urls), capture for handling errors and out for direct generation of

code. [7] Velocity, a Java-based template engine builds on #if, #foreach, #set, #include

and #parse as standard directives. [6] The core functionality provided by the templating

engines seems to heavily overlap with slight variations according to the environment in

which the different mechanisms are used. Prolog Server Pages functional elements repro-

duce the majority of the constructs with attention to the Prolog environment in which

they are to be used.

5.4.2 Conditional inclusion

psp:if goal=”. . . ”

Attempts to prove the specified goal and embeds the content defined by the enclosing

tags in the result upon success, otherwise, it is replaced by empty content. The element

performs an implicit cut and does not backtrack.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 32

psp:if function=”predicate(A, B, C, . . .)” [binding=”. . . ”]

Appends an uninstantiated argument to the predicate specified and calls the resulting

predicate. If this single-predicate goal can be proved, the enclosed content is embedded.

The difference between the if element as used in conjunction with goal and function

is that in the latter case, the substitution of the uninstantiated argument is available

through the local variable binding. In order to avoid name clashes for nested constructs,

the attribute binding can be used to rename this local variable.

psp:if expr=”. . . ”

Evaluates the given expression and embeds the content defined by the enclosing tags in

the result if the expression is identical to true. An error is generated if expression does

not evaluate to true or fail. If braces are omitted, only the two Boolean constants can

be used.

psp:if-else

Containing two child elements, if and else, this element is functionally identical to if

except that upon failure, the else part is included in the result. It is compulsory that

the node have exactly two child nodes, one of which is psp:if, the other psp:else, other

child nodes (including character data not enclosed by any of the aforementioned two) are

ignored.

psp:choose

Encloses psp:when elements and the otherwise element.

psp:when

Used in conjunction with the psp:choose element, it is provided as an alternative to

nested psp:if constructs to improve readability. Upon evaluation, the condition of the

first psp:when child node of a psp:choose element is tested, if it fails, evaluation proceeds

with the next condition. A psp:otherwise node allows an alternative in case all others

fail. Syntactically equivalent to the Prolog construct:

(predicate_1(A, B, C) -> action_1

; predicate_2(D, E) -> action_2

; action_otherwise

).

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 33

psp:when accepts exactly the same attributes as psp:if and results are identical in all

aspects. when constructs can always be – and internally are – rewritten as nested if-else

constructs:

<psp:choose>

<psp:when goal="goal1">

appears if goal1 can be proved

</psp:when>

<psp:when expr="expr2">

appears if expr2 evaluates to true

</psp:when>

<psp:otherwise>

appears otherwise

<psp:otherwise>

</psp:choose>

<psp:if-else>

<psp:if goal="goal1">

appears if goal1 can be proved

</psp:if>

<psp:else>

<psp:if-else>

<psp:if expr="expr2">

appears if expr2 evaluates to true

</psp:if>

<psp:else>

appears otherwise

</psp:else>

</psp:if-else>

</psp:else>

</psp:if-else>

5.4.3 Iteration

psp:for-each function=”predicate(A, B, C, . . .)” [iterator=”. . . ”]

Appends an uninstantiated variable to the n-ary predicate specified and calls the result-

ing (n + 1)-ary predicate. The appended uninstantiated variable is to return a proper list

upon success. The content of the element is evaluated for each member of the list, indi-

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 34

vidual members are available in the local context of the element by accessing the variable

iterator. The iterator variable is renamed by specifying an attribute of the same name.

Nothing is included in the result if either the predicate fails or the returned list is empty.

psp:for-each-else

In addition to psp:for-each, this construct allows specification of action in case the

predicate fails. Two child nodes are permitted: psp:for-each and psp:else, the rest is

ignored. The result is empty contents should the predicate provided as an attribute to

for-each return an empty list.

psp:for-all function=”predicate(A, B, C, . . .)”

The element can be considered as syntactic sugar and is identical to for-each, except

that results are extracted through backtracking rather than returned as a list. Calling

findall(X, predicate(A, B, C, . . . , X), List) prior to handing results to psp documents,

usage of this tag can be completely avoided. Nevertheless, for this very reason, no for-all-

else is provided: if predicate does not succeed at least once, findall/3 returns an empty

list.

5.4.4 Dynamic construction of elements

psp:element tag=”. . . ”

Enclosing attribute and content child elements, this element provides a means of dy-

namically creating additional elements during page evaluation. It is particularly useful if

the set of attributes is unknown beforehand and should be generated on-the-fly or the

element name depends on some condition. As this may lead to infinite loops, once brought

into existence, the created element is not preprocessed again, that is, one is not able to

exploit dynamic generation functionality to produce recursion.

psp:attribute name=”. . . ”

One of the processed child nodes of psp:element, this construct appends an attribute to

the element generated. The name of the attribute is as specified, while its value will contain

the contents of the attribute element with leading and trailing whitespace removed.

Dynamically generated elements may have non-dynamically generated attributes that

occur in its tag as regular name-value pairs. These always precede dynamically generated

tags.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 35

psp:content

The other child node of psp:element, it serves to provide a further level of nesting for

the actual content of the dynamically generated element. As a result of evaluation, the

dynamically created element will have content identical to the content enclosed by this

element.

5.4.5 Variable query and binding

psp:capture var=”varname”

Creates and unifies the uninstantiated variable varname with the string comprising of

the characters enclosed by the start and end tags with leading and trailing whitespace

removed. Enclosed content is evaluated prior to being assigned to the variable. The re-

sulting string may have zero length. The variable name may be capitalized to conform to

Prolog notational convention. The assignment is local to the context, that is, parent tags

are unaffected.

psp:capture content=”varname”

Creates the local context variable varname and unifies it with the target-independent

representation of the enclosed content. Essential

psp:insert var=”Variable” [arg=”ArgumentNumber” — coerce=”true”]

The value of the local Variable replaces the element upon evaluation of the page. The

variable must be atomic or an arg attribute is required to extract an attribute that

is simple. On the other hand, the attribute coerce may be provided to indicate that

compound term need to be laid out as if by printed by write/1.

psp:insert list=”List” nth=”Nth”

List is a local variable that satisfies the predicate is list(List), that is, it is a proper ground

list. The list must consist of atomic elements, the Nth member of which is extracted and

inserted at the place of the element. Nth is one-based.

psp:insert expr=”Expression”

Evaluates the given Expression, which replaces the element upon evaluation.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 36

psp:insert goal=”. . . ”

Calls the specified goal as if by call/1 and inserts any output it produces into the result.

Success or failure of the goal is ignored but it must not produce an exception.

psp:insert function=”predicate(A, B, C, . . .)”

Appends an uninstantiated argument to the specified predicate, calls the resulting single-

predicate goal and inserts the value of the appended argument into the result. Acts as if

it were defined as

<psp:capture var="temporary">

<psp:insert goal="predicate(A,B,C,...,X), write(X)" />

</psp:capture>

<psp:insert var="temporary" />

5.4.6 Miscellaneous tags

psp:cached

The element identifies the enclosed content as cached content. Such content is stored as

target-independent terms in memory between requests and is returned upon need. It serves

to declare dynamically generated but infrequently changing sections, which saves valuable

processing time by avoiding repetition of unnecessary computation-intensive tasks. It is

guaranteed that enclosed content is evaluated once after having imported the server page

document but it may be evaluated multiple times.

psp:import src=”sourcefile”

The page specified by sourcefile is imported into a self-contained module space and its

implementation is thus hidden from the importing page. Upon preprocessing, the tag is

replaced by the identified content.

psp:include src=”sourcefile”

The contents of sourcefile replaces the tag. Acts as if the contents of the specified source

were located at the place of the element. Encoding schemes used by the including and

included documents may not differ.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 37

5.4.7 Attributes of the root node

logic-file=”file”

Identifies the file containing the business logic for the page. The file specification should

either be absolute or relative, relative paths are resolved with respect to the directory

in which the related psp document is located. Paths should follow the unix notational

convention, that is, forward slashes are to be used.

output-method=”method”

Specifies the output method for the page. The output method is one of the following:

html (an html 4.0 compliant page is generated), xml (for an xml-compliant page) or

xhtml (for an xhtml 1.0 compliant page). No action is taken to verify that the document

actually conforms to the document type given.

5.5 Procedural semantics of special elements

Just as expression language elements, special elements are simplified upon preprocessing

and substituted by the content they generate upon evaluation. Simplification does not ap-

ply to all elements but can typically be used to verify syntactic conformance. For instance,

conditional expressions may test for a goal or an expression but not both. Checking valid-

ity at preprocessing time saves repeated verification at evaluation phase: the intermediate

representation is clearly not subject to further changes that would invalidate syntactic

compliance.

5.6 Extension mechanism

While the built-in elements of the psp namespace enable the construction of powerful web

pages, an extension mechanism is provided to support additional user-defined features.

Extensions are loaded and registered in prosper configuration.pl as facts in the follow-

ing manner: extension module(Namespace). Namespace is an xml-conforming namespace

specification an is identical to the name of a Prolog module that encapsulates the exten-

sion. The filename of the extension module and its name must match and all relevant

predicates that have counterparts as tags need to be exported. Registered extensions are

loaded automatically, no explicit use module/1 declarations are required.

By registration, a binding is established between the exported predicates in the module

and matching tags: upon page evaluation, elements of the name module:predicate name

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 38

will cause a call to be generated to module:predicate name(Attributes, Variables, Content,

Terms).

• Attributes is a list of name-value pairs,

• Variables is a list of all current variable bindings available in the context of the

element,

• Content is a ground term representing the enclosed content as discussed in Prolog

xml term representation and

• Terms should be instantiated to the content that replaces the element.

In general, both Content and Terms are lists with a single member, element/3, in

which other elements are nested. For instance, the predicate table/4 in the module csv

might convert a comma-separated list into an HTML table:

<csv:table>

1,first item

2,second item

</csv:table>

<table>

<tr>

<td>1</td>

<td>first item</td>

</tr>

<tr>

<td>2</td>

<td>second item</td>

</tr>

</table>

In order to register this extension, one includes the following line in prosper configuration:

extension_module(table).

In addition to evaluation time hooks, an extension may provide preprocessing time

hooks. These have the signature module:predicate name(Attributes, Content, Terms). The

most significant difference is noted in the absence of the argument Variables: at preprocess-

ing time, these are unavailable. Nevertheless, preprocessing time hooks work identical to

evaluation time hooks and must accept and return arguments of the same format. Pre-

processing time hooks are useful in

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 39

• checking syntax of attributes. Elements may have exclusive attributes that cannot

be used simultaneously. It is wise to check for correct usage in code that executes

once rather than multiple times. For instance, the built-in element if verifies at this

phase that only one of its goal, function or expr attributes is specified and issues

an error otherwise.

• evaluation and preprocessing of content. In some cases, simplification can be per-

formed even if no context information is at one’s disposal. For instance, parts that

depend on conditions that always evaluate to false can be omitted.

• dynamic transformation of content. For instance, the built-in element if, depending

on which argument it was invoked with, transforms itself into an if with goal,

if with function or if with expression element.

Evaluation time extension hooks must call terms to elements(Content, Variables, Terms)

on their content to cause an evaluation thereof. Variables may be identical to the list

received by the hook or may be prepended by additional variables. In order to ensure

proper visibility rules, Variables may not be changed in other ways. Preprocessing time

hooks do not need to call the aforementioned predicate. Preprocessing and evaluation

are handled differently as preprocessing is a greedy operation: it preprocesses all child

elements prior to preprocessing the parent, while evaluation is a lazy one: evaluation of

the parent precedes that of children. Lazy evaluation is necessary as content may rely

on variables that are made available by the parent. For instance, the built-in element

for-each provides the variable iterator.

Extensions are loaded upon container startup. Dynamic asserting of extensions is not

supported.

5.7 Prolog Business Logic files

Prolog Business Logic files encapsulate logic related to a Prolog Server Page document.

Multiple psp documents may share the same logic file. Logic files are conventional Prolog

modules which are compiled for faster processing. They may use external modules and

foreign extensions provided that these are available either in the Prolog library or the

search path but may not use any module with the prefix prosper. In addition, a special

module is available to business logic files, namely psp, which provides access to automat-

ically asserted facts such as data obtained via http requests or sessions. This is also

described in this section.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 40

5.8 Environment facts

Associated with an http request to retrieve a document, environment information is

often available. Notably, get requests carry information in the query string, which can

be decoded into name-value pairs, whereas post requests transfer data in the request

body. Context information, such as the currently processing document or the name of the

tied logic module, may be of value. Of paramount importance are session variables which

represent bindings that span over multiple requests but belong to a single connection. It

is thus feasible to make these data available to logic files through Prolog predicates and

facts. This is achieved by the module psp, which is available from every module regardless

of level of nesting and is accessed by prefixing; for instance, GET name-value pairs are

obtained through the predicate psp:http get(Name, Value). This is similar to how request

variables are accessed in php through superglobal arrays. [18]

5.8.1 Facts for a single request

http environment can be accessed through predicates of the form http * /n in the module

psp. Name-value pairs gained via http get and post requests are short-lived in the

sense that they are specific to a single request only: http get/2 and http post/2 facts

are asserted into the program database upon initiation of evaluation and retracted upon

completion thereof. http get/2 and http post/2 facts are local to the thread into which they

are asserted; they are invisible to the outside. The predicate http request/2 is provided

as a syntactic sugar if the source of data does not matter. All clauses have the signature

http name(?Name, ?Value), that is, they can be used for listing, query or verification. For

consistency, it is not recommended to dynamically alter these facts in logic files.

5.8.2 Facts for session management

Long-lived name-value pairs associated with a session are accessed through the pred-

icate session(?Name, ?Value). In order to modify session variables, session set/2, ses-

sion update/3 and session remove/2 are provided. Modification is non-backtracking (de-

structive) and requires the value argument to be bound.

Facts related to sessions are treated differently from facts http get/2 and http post/2.

Prior to initiating page evaluation, session variables are asserted into the thread-local pro-

gram database of the executing thread using a data store that contains all session-related

information. Upon completion, however, modifications via session * /2,3 predicates are

not discarded but replace any data previously available. Sessions do not persist between

Prolog Web Container restarts.

CHAPTER 5. PROLOG SERVER PAGES DOCUMENTS 41

5.8.3 Facts for managing application-level variables

Application-level variables provide another persisting mechanism. Contrary to session

variables, these are neither tied to any request, nor any session and globally available

from any threads at any time. Elementary synchronization is provided by means of appli-

cation update(+VariableName, :Predicate) to avoid one thread accessing an inconsistent

state while another is performing an operation on an application variable. VariableName

is the name of the application variable, while Predicate must be callable and have the

signature Predicate(+OldValue, -NewValue). OldValue is unified with the current value

of the application variable, the predicate must unify NewValue with the future value. It

is guaranteed that no other thread accesses the application variable while the new value

is being computed. The following example illustrates how this mechanism can be used:

updater_predicate(OldValue, NewValue) :-

NewValue is OldValue + 1.

psp:application_update(counter, updater_predicate).

Similarly to session variables, they provide destructive assignment and do not survive

system restarts.

Chapter 6

Reference implementation

Demonstrating the capabilities outlined, the paper concludes with a reference implemen-

tation in SWI-Prolog. SWI-Prolog is a Prolog implementation compliant to part one

of the ISO standard with additional functionality compatible to other Prolog systems,

notably Quintus and SICStus. It has been targeted for building large applications and

has hence support for multi-threading, provides an extensive foreign interface to C, is

bounded by few system limits and has a rich set of supplementary library modules. [24]

As multi-threading is key to efficient servicing of Prolog Server Pages and inter-process

communication via sockets is heavily relied on, SWI-Prolog, which has built-in support

for these features, seems a straightforward choice.

6.1 Overview

The reference implementation builds up of three major components:

• fastcgi encapsulates code responsible for socket-based communication using the

FastCGI protocol. It is implemented both in Prolog and C, the primary advantage

of the former is portability and ease of debugging, while the latter is superior in

terms of execution time. The two exported predicates of the Prolog implementation

fcgi receive/2 and fcgi reply/2 marshal reading data from and writing data to a pre-

viously opened socket stream. The C implementation also relies on Prolog streams

but integrates character encoding and provides a slightly lower-level interface. It is

complemented by a thin Prolog layer.

• The majority of Prolog Web Container functionality is implemented in the Prolog

module prosper server. It creates, manages and destroys worker threads and handles

incoming requests by assigning idle threads to them. It performs necessary charac-

ter conversions to ensure proper transmission of data, creates and assigns session

42

CHAPTER 6. REFERENCE IMPLEMENTATION 43

identifiers.

• Code related to Prolog Server Pages, which builds upon Prolog Web Container

services, is distributed among the source files prosper core, prosper builtin and pros-

per expression language. This separation is mostly logical rather than architectural,

the files form a single module space. The only exported predicate is display page/2,

which calls two other predicates of primary importance:

– import page/1, when required, reads the requested psp page from disk, trans-

forms it into intermediate representation, while ensuring that no other thread

is performing the very same task.

– output page/1 asserts request- and session-specific variables into thread-local

module space, evaluates the intermediate representation, outputs text result

and retracts variables. Session-specific variables checked out prior to evaluation

are reasserted into their global storage upon completion thereof.

The actual processing of terms is performed by the predicates element to terms/4,

term to elements/3 and output element/1. element to terms/4 transforms Prolog

xml into intermediate term representation, term to elements/3 attaches context

information and results in target-independent representation of output, which is

written to the output stream by output element/1.

The reference implementation was developed under Windows XP using Apache 2.0 as

a web server with mod fastcgi enabled. The web server connected to the implementation

through the tcp port 1160 via sockets.

6.1.1 Character encoding

In SWI-Prolog, atoms and strings are represented internally as sequences of either 8-bit

ASCII characters or 31-bit UCS4 characters (stored as 32-bit integers).1 Direct transmis-

sion of such characters is inefficient and not portable. Therefore, the implementation relies

on encoding these characters in accordance with the UTF-8 scheme. UTF-8 encodes Uni-

code characters as one- to four-byte character sequences: ascii characters are left intact,

those with character codes ≥ 128 are encoded as multi-byte sequences up to U+10FFFF.

This enables transmission of data through protocols that support only octects without

regard to byte order. [25]

The reference implementation requires all external data to be encoded in UTF-8. This

includes Prolog Server Pages as stored in the filesystem, http request form data and

1If possible, the compact representation is chosen.

CHAPTER 6. REFERENCE IMPLEMENTATION 44

any text output generated. However, transformation between UTF-8 and Prolog internal

representation is transparent.

In certain contexts, such as the query string at the end of an url, some ascii characters

are reserved. For instance, the ampersand (&) character is used to separate name-value

pairs. In order to circumvent this limitation, potentially illegal characters are encoded

as %xx sequences, where xx is a hexadecimal code in the range 00-ff. Prior to using

these values, this encoding must be resolved. A UTF-8 to Unicode conversion may then

commence.

6.1.2 Global configuration file

Some options that govern global functionality are stored in the configuration file pros-

per configuration.pl. This includes the port the web container is listening to, the level of

debug information printed or the number of threads available for incoming requests. The

configuration is interpreted upon startup, for any changes to take effect, the web container

must be restarted.

6.2 Prolog Web Container

The reference implementation of Prolog Web Container, found in module prosper server,

is capable of operating in single-threaded or multi-threaded mode. While the latter is

suited for use in regular environments, the former is particularly useful for debugging.

Single-threaded operation is specified by the configuration fact default workers(1) in pros-

per configuration. In the case of a multi-threaded server, default workers(N) is used to give

the number of worker threads, where N ≥ 2.

The only exported predicate of the module is process requests/0. Calling the appro-

priate predicates of the built-in module socket implementing a standard, C-like tcp/ip

interface, it sets up the application to listen on the port as defined by default port/1

in prosper configuration. In addition, if appropriate, worker threads are created by cre-

ate workers/1 and attached to the message queue prosper workers. Finally, the predicate

enters an infinite loop implemented in listen accept/1, which accepts inbound connections

to the application.

6.2.1 Server and worker threads

The server thread is the main thread of the container application. Running in an infinite

cycle, it accepts any inbound tcp/ip requests. In order to attain the highest possible

performance, once a connection is accepted, any communication through that connection

CHAPTER 6. REFERENCE IMPLEMENTATION 45

is handled by the worker thread that is assigned the particular task. Any communication

problems should arise, it is the worker thread that is to make the appropriate steps, closing

the connection included. Task assignment is done by dispatching a message to the queue

prosper workers via thread send message/2, which is then received by any available idle

worker thread. The message contains an only argument: the socket related to the accepted

connection.

Worker threads are created by create workers/1 and execute the goal worker/0. They

are detached threads that communicate with the server (connection-accepting) thread

with messages accepted using thread get message/2. Detached threads differ from regular

threads in one aspect: they cannot be joined, that is, there exists no mechanism to retrieve

whether the execution of the goal the thread was initiated with terminated in success

or failure or caused an exception, moreover, variable substitutions on success are lost.

However, in this particular case, it is not required, worker threads – just as the main

server thread – run continuously in an active-idle cycle, any exchange of information is

achieved via message queues. thread get message(Queue, Message) suspends the execution

of the thread until a message is received on the specified Queue. If so, an attempt is made

to unify it with Message; upon success, the thread resumes execution. This prevents

constant polling to verify if any job is available.

6.2.2 Handling requests

The predicate worker/0 only implements receiving messages and terminating the thread

upon exit, actual processing of requests is done in process request/1. As they are detached

threads, workers may not fail or cause exceptions. To this end, communication is wrapped

in a call cleanup/2 clause, which closes opened streams both on unexpected error or

successful completion of a request.

process request/1, relying on the underlying FastCGI implementation, processes data

obtained via the protocol. Data is available in two flavors: environment variables and

standard input. Hence, processing means, in particular, actions that relate to environment

variables received as name-value pairs.

• http path/2 extracts the PATH TRANSLATED environment variable and converts its

value to a canonical file path. Canonization resolves relative paths and maps back-

slashes to slashes. Any constraints that should be imposed on the resulting path

(directory subtree, extension, etc.) are implemented here, if they are not met, the

predicate fails and the request – in turn – is denied.

• http post/4 checks if the environment variable METHOD equals POST, in which case it

extracts POST data from the standard input. Standard input in this context refers to

CHAPTER 6. REFERENCE IMPLEMENTATION 46

a FastCGI stream rather than an actual stream. Unlike in the case of cgi applica-

tions, the predicate need not check CONTENT LENGTH, FastCGI signals end of stream

input with an empty record. If data can be interpreted as html form data sent via

POST, the content of standard input is cleared and the corresponding outbound argu-

ment is unified with an empty list.2 For xml http requests, the outbound argument

for the body of the request is unified with a Prolog xml term representation.

• http get/2 parses the request uri and unifies its outbound argument with a list of

name-value pairs that occur. Parsing includes recognition of ampersand or semicolon

delimiters, interpreting % encoding and performing an UTF-8 decoding.

• http session/3 removes the session identifier if present among the extracted name-

value pairs or generates a new if none is supplied. Further requests may use this

session identifier.

All data obtained by processing environment variables is handed to display page/2, a

predicate that belongs to the module implementing Prolog Server Pages. The predicate

returns no value but any output it generates will be wrapped in a FastCGI standard

output stream and will be returned to the client that initiated the request with proper

UTF-8 encoding.

6.3 Prolog Server Pages

The implementation of Prolog Server Pages is centralized around two distinct phases:

preprocessing and evaluation of PSP pages. This is reflected in the two major goals of dis-

play page/2: import page/1 and output page/2. The former, if it is unavailable in memory,

consults the supplied psp document, converts its xml representation into intermediate

term format and stores that document in a cache for later retrieval. The latter fetches the

document from the cache, asserts any context-specific environment information (includ-

ing session variables) into the special module psp, performs its evaluation, outputs the

resulting target-independent representation and retracts asserted clauses.

6.3.1 Concurrent importation

The goal of page importation is making a Prolog Server Pages document available in

cache. While a relatively simple task for single-threaded applications, multi-threading in-

troduces difficulties to overcome: multiple executing threads should not be importing and

2This is very similar to the Java behavior for POST requests.

CHAPTER 6. REFERENCE IMPLEMENTATION 47

preprocessing the very same document. To this end, import page(File) after ascertain-

ing that File has not yet been asserted, guarded by a mutex, attempts importation of

the page (import test and set/1). If it does not yet exist, the thread places a dynamic

predicate page importing(File, Thread) in the program database. The mutex is released

immediately and importation begins. On the other hand, if page importing(File, Thread)

already exists, a message is sent to the importing Thread requesting notification, prior to

releasing the mutex. The message is deposited in the private message queue of the im-

porting thread and the sender suspends execution. As soon as importation completes with

success or failure, the message queue is checked and all suspended threads are notified.

Upon success, previously suspended threads can begin evaluation in their individual con-

text. Upon failure, no thread should perform a repeated importation and all return with

failure. Notification is protected by the aforementioned mutex to avoid other threads

hooking the importer’s message queue while it dispatches completion notifications but

page importing/2 is no longer in the database.

6.3.2 Page preprocessing

Importation consists of two distinct phases: loading an xml document into Prolog (to

yield xml term representation) and preprocessing it (intermediate representation). To

attain loading the document, any suitable parser may suffice.3 Preprocessing is imple-

mented in the predicate element to terms/4. It recognizes tags with the prefix psp and

transforms them into corresponding intermediate term representations. Registered exten-

sion prefixes are also recognized. In order to avoid ambiguities, prefix names are fixed,

even though proper xmlns namespace specification is required at the beginning of a doc-

ument. Preprocessing-time hooks, if they exist, are called, this is done by ensure hook/4.

All built-in functional elements have preprocessing-time hooks. Error messages that may

result from syntactic non-conformance (missing or contradictory attribute specification,

missing nested elements, etc.) are embedded into the result as failure elements by er-

ror term/2,3. Such warnings and errors can be sup

6.3.3 Page evaluation

Performed by output page/2, page evaluation itself may be broken into three processes:

assertion of global context-specific information (http get/2, http post/2, session/2, etc.),

actual evaluation and retraction of context-specific information. terms to elements(Terms,

3Currently, the SWI library module sgml performs this task. One of its primary disadvantages is that
it attempts to interpret ill-formed xml documents, which may be desirable for html content but clearly
leads to prolonged debugging in the case of Prolog Server Pages. Instead, the place of error should be
precisely reported.

CHAPTER 6. REFERENCE IMPLEMENTATION 48

Variables, Results) performs the main task.

• Terms is a list of intermediate term representations, which may be one of

– element/3 for static elements,

– builtin/3 for built-in elements of the psp namespace,

– extension/3 for user-defined extensions as defined in the configuration file,

– cache/2 for content which is stored in target-independent rather than interme-

diate term representation,

– capture simple/2 for content that is captured in a variable as a string,

– capture element list/2 for content that is captured preserving its structure,

– insert content/1 for insertion of captured content,

– insert var/1,2 for insertion of atomic or nth argument of compound terms,

– insert list/2 for insertion of an nth argument of a list,

– insert goal/1 for execution of a goal whose output is inserted,

– insert function/1 for execution of a single-predicate goal, whose last, outbound

argument is inserted,

– insert expr/1 for insertion of the result of an expression.

The first three – element/3, builtin/3 and extension/3 – may nest other intermediate

terms in their last, Content argument.

• Variables is a list of local variables defined in the current context. During eval-

uation, term to elements(3), which is called by terms to elements(3) for each sin-

gle intermediate term, passes this list to any nested element. These elements may

prepend the list by variables that they define within their content. For instance,

for-each prepends the variable iterator. It is possible to isolate page fragments

by passing an empty list but is not recommended for the sake of consistence. Vari-

ants of capture/2 are treated specially: their validity extends only to those siblings

that follow the declaration. Variables is an empty list for the root element, that

is, implicit (globally scoped) variables are not propagated through this prepending

mechanism even though they may be viewed as if it were so.

• Results is a list target-independent terms the evaluation produces.

A second pass on el expressions whose evaluation ended with potential success is

also attempted at this phase. However, this time all such expressions must reduce to a

constant. Failure may indicate that the expression

CHAPTER 6. REFERENCE IMPLEMENTATION 49

• either refers to a global variable that does not exist

• or to a local variable that is undefined in the context.

A failure causes the expression to evaluate to null, which is propagated into the

output.

6.4 Performance evaluation

While primarily designed to increase designer and programmer performance, Prolog Server

Pages architecture is comparable to other Prolog-based technologies in terms of speed. In

a simple loopback scenario, different configurations were polled by http requests with

get parameters. All configurations parsed the query string and returned a simple com-

puted result: Prolog Server Pages produced the prosper info.psp page, which prints

asserted get, post and session data and all available environment variables, other config-

urations evaluated the passed expression by means of is/2 and printed the result. cgi

and FastCGI-based applications connected to Apache/2.0.54, Java-based solutions used

Apache-Coyote/1.1. Benchmarking was performed by ApacheBench 2.0.41 with a concur-

rency level of 3 and 1000 complete requests. (Table 6.1) [1]

configuration requests/sec

SWI-Prolog as a CGI application 35
PrologBeans in conjunction with JSP 35
Prolog Server Pages with FastCGI implemented in Prolog 45
Prolog Server Pages with FastCGI implemented in C 200
static html content 580

Table 6.1: Throughput for different Prolog configurations as measured in requests per
second (rounded to nearest multiple of 5)

6.5 Sample application

The full capabilities of Prolog Server Pages are demonstrated by means of a sample web

application. The application core (business logic) performs parsing and analysis of postal

addresses and – connecting to an external data source – produces lists of addresses that

are potentially identical to those given as input. Extending core functionality, the web

interface enables its user to supervise the process of address identification: he may enter

an address, see the results of parsing, modify address entries as needed, verify if unique

CHAPTER 6. REFERENCE IMPLEMENTATION 50

identification based on the data supplied can be carried out. If not, he may manually select

a list entry from among addresses thought to be potentially identical by the system to

the one in question. Alternatively, he may supply additional entries to the postal address

to narrow the results. Multiple output formats (xhtml or xml) cater for multiple usage

scenarios (regular browsers or client-side scripting-enabled browsers).

The sample application makes use of all features offered by the Prolog Server Pages

Extensible Architecture. Its core module is completely independent from the web inter-

face and may be run separately from the web application. Web pages displayed to the

user exploit the basic functionality of standard elements, including conditional processing,

iteration, inclusion of external fragments and dynamic element generation. Variables and

expression language is heavily relied on to formulate context-specific conditions. Informa-

tion gained via user interaction is propagated through requests by means of sessions until

the desired results are found. A special element to produce address list entries is added

to demonstrate the use of the extension mechanism.

Chapter 7

Evaluation

By designing Prolog Server Pages Architecture, the author has provided a comprehensive

support for creating web interfaces for Prolog applications. Integrating the benefits of

different technologies (PiLLoW, FastCGI, server pages), a two-layered architecture has

been put forward. The author hopes that is will facilitate the easier development of middle-

sized applications intended for the web.

Prolog Web Container, the lower-level layer, hides protocol-specific functionality from

the programmer. Extending the support offered by existing libraries, it provides a more

natural access to http context by automating parsing of environment variables and as-

serting data into confined Prolog module space. The container is long-lived, which allows

for persistent data through sessions and globally shared application variables. By relying

on the FastCGI protocol for communication with the web server, it makes Prolog web

solutions flexible and independent.

Prolog Server Pages, the higher-level layer, exploits the opportunities in separating

model and view. By doing so, not only can existing Prolog applications be extended with

web interfaces easily but also design and development of code is separated. A standard

set of server page tags, commonly found in many other technologies is provided with

an extension mechanism to supplement built-in functionality with user-defined behavior

and an expression language facilitates easier insertion of simple computed values. Prolog

Business Logic files, attached to Prolog Server Pages encapsulate application logic and

isolate it from interface design while making use of the extensive module system of Prolog.

The reference implementation has shown that the architecture described is sound and

compares to other available Prolog technologies in terms of ease of development and

speed. The sample application has demonstrated that middle-sized solutions can indeed

be developed using Prolog. While it is intended to complement Prolog applications with

web interfaces rather than replace technologies based on imperative languages, Prolog

Server Pages might also be seen as an alternative when developing new applications.

51

CHAPTER 7. EVALUATION 52

7.1 Future work

In creating a full-fledged web application, database access is of primary importance. Prolog

itself provides an internal mechanism for storing data by means of facts in the form

relation(data1, data2, data3, . . .). Facts provide a seamless integration of data into a

program by allowing the toolset of the language to operate on them. While the power

of Prolog to handle large amounts of data is often underestimated, strong persistence

requirements may make it necessary to make use of an external relational database. In

addition, relational databases often provide a more efficient data retrieval, a more flexible

lookup and a faster and significantly easier management of frequently changing data. On

the other hand, Structured Query Language (sql), a standard declarative way of accessing

and manipulating rdbms data, is inadequately integrated into Prolog. To remedy the

situation and bridge the gap between rdbms and Prolog, it is feasible to utilize a Prolog-

to-sql compiler that transforms Prolog terms into sql queries, which are – in turn – used

to retrieve data against the database. This has several advantages:

• Only those records are fetched that match a search criterion. This dramatically re-

duces Prolog memory overhead, which requires all data to be simultaneously present.

• Prolog constructs (conjunction, disjunction, negation, etc.) can be used to formulate

a term that defines required data. Dynamic creation of such terms is possible without

the danger of undesired sql injection.

• Different SQL dialects can be seen uniformly.

One notable implementation of this schema is the ProDBI interface featuring the

Prolog-to-SQL compiler by Draxler. [15] Draxler’s compiler distinguishes two forms of

representation: relation and view level. Relation level is the logical correspondent of data-

base tables (relations), while views incorporate higher-level abstraction: restrictions, joins,

aggregate functions. Views allow usage of a wide range of Prolog syntax, notably conjunc-

tion, disjunction, negation and comparisons, which are then translated to their equivalent

SQL queries, thereby avoiding fetching database records that would be discarded by later

processing. An illustration is given by the example below:

query(

medical(A,B,C,D,E),

(doctor(A, B, C, D, E),

\+ floor(’1st floor’, B),

\+ (A = ’d001’),

E > avg(ChargePerMin, A1 ^ A2 ^ A3 ^ A4 ^

CHAPTER 7. EVALUATION 53

(doctor(A1, A2, A3, A4, ChargePerMin)))

)

).

SELECT rel1.DoctorId, rel1.FloorId, rel1.DoctorName,

rel1.PhoneNo, rel1.ChargePerMin

FROM doctor rel1

WHERE

rel1.FId = ? AND

NOT EXISTS (

SELECT *

FROM Floor rel2

WHERE rel2.FloorName = ’1st floor’ AND

rel2.FloorId = rel1.FloorId

) AND

rel1.Did <> ’d001’ AND

rel1.ChargePerMin > (

SELECT AVG(rel3.ChargePerMin)

FROM Doctor rel3

)

;

While the representation is powerful is creating equivalent joins through WHERE

clauses by means of identical uninstantiated variables, incorporating sql-level restrictions

by means of atoms, numbers and comparison operators, it lacks, in particular, the ability

• to allow natural, easy-to-read definition

• of representing arbitrarily complex joins

• of unlimited nesting of individual SELECT queries

• of advanced string manipulation

• to rename arguments in the result

Therefore, in order to supplement Prolog Server Pages with a data access layer, a new

schema, utilizing the term expansion facilities provided by most Prolog implementations,

should be devised. Building on available low-level rdbms interfaces, it should provide a

higher level of abstraction yet preserve the full expressive power of sql.

Bibliography

[1] Apache benchmarking tool. http://httpd.apache.org/docs/2.0/programs/ab.html.

[2] Module mod fastcgi. http://www.fastcgi.com.

[3] PrologBeans. http://www.sics.se/sicstus/docs/latest/html/sicstus/PrologBeans.html.

[4] sicstus Prolog manual. http://www.sics.se/sicstus/docs/latest/html/sicstus/.

[5] The cgi specification. http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

[6] Velocity. http://jakarta.apache.org/velocity/.

[7] Eric Armstrong et al. The j2ee 1.4 Tutorial (For Sun Java System Application

Server Platform Edition 8.1 2005Q2 UR2). Sun Microsystems, June 7, 2005.

[8] Tim Bray et al. Extensible Markup Language (xml) 1.0 (Second Edition), October

6, 2000. http://www.w3.org/TR/2000/REC-xml-20001006.html.

[9] Mark R. Brown. Fastcgi specification. Technical report, Open Market, Inc., 29 April

1996. Document Version: 1.0.

[10] Daniel Cabeza and Manuel Hermenegildo. The PiLLoW Web Programming Library.

Technical report, The CLIP Group, School of Computer Science, Technical University

of Madrid, January 5, 2001.

[11] David Carmona. Programming the Thread Pool in the .net Framework. Microsoft

Developers’ Network, June 2002.

[12] Nicholas Carriero and David Gelernter. Linda in context. Communications of the

ACM, 32(4), April 1989.

[13] James Clark. XSL Transformations (XSLT) Version 1.0, November 16, 1999.

http://www.w3.org/TR/1999/REC-xslt-19991116.

[14] Danny Coward and Yutaka Yoshida. Java Servlet specification (Version 2.4). Sun

Microsystems, November 24, 2003.

54

BIBLIOGRAPHY 55

[15] Christoph Draxler. A Powerful Prolog to sql compiler. Technical report, CIS

Centre for Information and Language Processing, Ludwig-Maximilians-Universität

München, August 16, 1993.

[16] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. The Intenet Society,

June 1999.

[17] Jesse James Garrett. Ajax: A new approach to web applications, February 18, 2005.

http://www.adaptivepath.com/publications/essays/archives/000385.php.

[18] Gabor Hojtsy. php manual, 31 March 2005.

[19] Myunghwa Kang et al. webio Library for Executing Application Programs on the

Internet. Technical report, Graduate School of Information and Telecommunications,

Sangmyung University Seoul, 1999. IEEE TENCON.

[20] Monte Ohrt and Andrei Zmievski. Smarty – the compiling php template engine,

March 31, 2005.

[21] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. html 4.0 Specification, April 24,

1998. http://www.w3.org/TR/1998/REC-html40-19980424.

[22] Mark Roth and Eduardo Pelegŕı-Llopart. JavaServer Pages specification (Version

2.0). Sun Microsystems, November 24, 2003.

[23] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2003.

[24] Jan Wielemaker. swi-Prolog manual.

[25] F. Yergeau. rfc 3629 - utf-8, a transformation format of iso 10646. Technical

report, The Internet Society, Network Working Group, November 2003.

Appendix A

Expression language functions

A.1 Comparison operators

A =:= B equal to

A eq B equal to (xml-compliant syntax)

A = \ = B not equal to

A neq B not equal to (xml-compliant syntax)

A < B less than

A lt B less than (xml-compliant syntax)

A =< B equal to or less than

A lte B less than or equal to (xml-compliant syntax)

A >= B greater than or equal to

A gte B greater than or equal to (xml-compliant syntax)

A > B greater than

A gt B greater than (xml-compliant syntax)

A.2 String comparison operators

A == B identical to

A iden B identical to (xml-compliant syntax)

A \= B not identical to

A niden B not identical to (xml-compliant syntax)

56

APPENDIX A. EXPRESSION LANGUAGE FUNCTIONS 57

A.3 Arithmetic operators

Special constants

e the base of natural logarithm

pi one half times the perimeter of a unit circle

Elementary arithmetic

A + B addition

A - B subtraction

A * B multiplication

A / B division

A // B integer division

-A unary minus

A rem B remainder

A mod B modulo: A - A // B * B

sqrt(A) square root of A

Exponentiation and logarithm

exp(A) e ** A

A ˆ B exponentiation: A raised to the power B

A ** B exponentiation

log(A) natural logarithm

log10(A) base 10 logarithm

Trigonometric

sin(A) sine

cos(A) cosine

tan(A) tangent

asin(A) inverse sine

acos(A) inverse cosine

atan(A) inverse tangent

atan(A, B) arctan(B/A)

APPENDIX A. EXPRESSION LANGUAGE FUNCTIONS 58

Bitwise operators

msb(A) most significant bit: equivalent to floor(log(A)/log(2)) but more efficient

\ A bitwise negation

bw not A bitwise not

A /\ B bitwise and

A bw and B bitwise and

A \/ B bitwise or

A bw or B bitwise or

A xor B bitwise exclusive or

A << B bitwise left shift

A ls B bitwise left shift

A >> B bitwise right shift

A rs B bitwise right shift

Floating-point numbers

float integer part(A) integer part

float fractional part(A) fractional part

ceiling(A) smallest integer larger than or equal to

floor(A) largest integer smaller than or equal to

round(A) round to the nearest integer

Miscellaneous

sign(A) sign of A

abs(A) absolute value of A

min(A, B) the least of A and B

max(A, B) the greatest of A and B

A.4 String functions

prefix(A, B) true if the prefix of A is B, fail otherwise

suffix(A, B) true if the suffix of A is B, fail otherwise

contains(A, B) true if A contains B, fail otherwise

concat(A, B, C, . . .) the string concatenation of A, B, C, etc.

trim(A) A with leading and trailing whitespace removed

replace(A, B, C) all occurrences of B replaced with C in A

Appendix B

Deployment instructions

During the development of the Prolog Server Pages Architecture the author used SWI-

Prolog 5.5.33 running on Windows XP. Requests were served by Apache 2.0.54 running

in conjunction with mod fastcgi 2.4.2. Data requests were processed by Microsoft SQL

Server 2000 8.0.760. All processes ran on the same machine.

In order to run Prolog Server Pages Extensible Architecture with the default con-

figuration – identical to that used in the development of the framework – one must

possess an operational installation of FastCGI-enabled Apache 2.x series. The web sites

http://httpd.apache.org and http://www.fastcgi.com give details on how to per-

form the installation. In particular, the Apache configuration file needs to contain the

following global directives:

LoadModule fastcgi_module modules/mod_fastcgi.dll

FastCgiExternalServer <path> -host localhost:1160

As explained in the FastCGI documentation, path is virtual: all requests that are

resolved by Apache to point to this directory are handled by the external application

listening to port 1160 rather than the web server itself. Nevertheless, in the case of Prolog

Server Pages, the directory must correspond to an actual entry in the filesystem as this

path is used by the achitecture to locate server pages files and logic modules with relative

paths.

To test the sample application, an odbc-enabled database server must also be running

on the same machine as Prolog Server Pages, accessed with the name mqis. The attach and

detach scripts provided with the sample application can be used to deploy the database

required by the sample application.

Prolog Server Pages Extensible Architecture must be started prior to accessing any

Prosper-processed pages by consulting the module prosper server and executing the pred-

icate go/0.

59

	cover.pdf
	prosper.pdf

